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Rheumatoid arthritis is a prototypical autoimmune disease that causes joint
inflammation and destruction’. There is currently no cure for rheumatoid arthritis,
and the effectiveness of treatments varies across patients, suggesting an undefined
pathogenic diversity'2. Here, to deconstruct the cell states and pathways that
characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in
inflamed synovium from patients with rheumatoid arthritis. We used multi-modal
single-cell RNA-sequencing and surface protein data coupled with histology of
synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis
synovial tissue that includes more than 314,000 cells. We stratified tissues into six
groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized
by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial
inflammation in rheumatoid arthritis, ranging from samples enriched for Tand B cells
to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk
genes, histology and serology metrics are associated with particular CTAPs. CTAPs
are dynamic and can predict treatment response, highlighting the clinical utility of
classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and
molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal
new insights into rheumatoid arthritis pathology and heterogeneity that could inform
novel targeted treatments.

Rheumatoid arthritis is a systemic autoimmune disease that affects up
to1% of the population®.Itis characterized by inflammation of synovial
joint tissue and extra-articular manifestations that lead to pain, joint
damage and disability’. The clinical course of rheumatoid arthritis
has been transformed by targeted therapies, including those aimed
at TNF, IL-6, B cells, T cell co-stimulation and the JAK-STAT pathway'.
However, many patients are refractory to these therapies and do not
achieve remission® Thus, there is a clinical need for new treatment
targets and for predictors of patient-specific responses to treatment.
Genetic diversity and variable responses to targeted therapies suggest
that rheumatoid arthritis is a heterogeneous disease*. However, genetic
and clinical differences in disease duration or activity do not reliably
predict the treatment response or druggable targets™’.

A more granular understanding of cell states and synovial pheno-
typesininflamed joints could inform prognosis and therapeutic targets.
Encouragingly, clinical trials using histologic or bulk RNA-sequencing
(RNA-seq) analysis of synovial tissue suggest that treatment response
may depend on synovial cellular composition®’. Previous studies have
identified effector cell states in rheumatoid arthritis pathophysiology
that represent promising treatment targets, including HBEGF'IL1B*
macrophages, SLAMF7* super-activated macrophages, MERTK" mac-
rophages, CD11c" autoimmune-associated B cells (ABCs), PD-1"' T
peripheral helper (T,y) cells, granzyme K'CD8" T cells and NOTCH3*
synovial fibroblasts® ¢, To determine whether some states are enriched
onlyinspecific subsets of patients, we analysed cell-state composition
in a clinically diverse set of patients with active rheumatoid arthritis.

A list of affiliations appears at the end of the paper.
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Fig.1|Overview of the multi-modal single-cell synovial tissue pipeline and
cell-type abundance analysis that reveals distinct rheumatoid arthritis
CTAPs. a-d, Description (a) of the patient recruitment, clinical and histologic
metrics, synovial sample processing pipeline and computational analysis
strategy, including identification of major cell types and fine-grained cell
states (b), definition of distinct rheumatoid arthritis CTAPs (c), and cell
neighbourhood associations with each CTAP or with clinical or histologic
parameters for each major cell type (d). OA, osteoarthritis; RA, rheumatoid
arthritis; sig., significant. e, Integrative uniform manifold approximation and
projection (UMAP) based on mRNA and protein discriminated major cell types,
f, Hierarchical clustering of cell-type abundances captures six rheumatoid
arthritis subgroups, referred to as CTAPs. The nine osteoarthritis samples are

As rheumatoid arthritis shares disease-associated tissue cell states
and genetic risk loci with other autoimmune diseases's, these
analyses may offer insights into other diseases that feature tissue
inflammation.

Recruitment and multi-modal analysis of tissue

We obtained a total of 82 synovial tissue samples from patients exhib-
iting moderate to high disease activity (clinical disease activity index
(CDAI) >10). To captureaclinical spectrum of rheumatoid arthritis, we

shown as acomparison. Eachbar represents one synovial sample, coloured by
the proportionofeach major celltype. g, PCA of major cell-type abundances.
Eachdotrepresentsasample, plotted based onits PCland PC2 projections
and coloured by CTAPs. h, Representative synovial tissue fragments from
each ofthe CTAPs. Top row, haematoxylin and eosin (H&E) staining. Middle
row,immunofluorescence microscopy for CD3,CD34, CD68, CD90, CLIC5
and HLA-DR. Bottom row, immunofluorescence microscopy for CD3, CD20
and CD138.Scalebars:100 pm (CTAP-EFM) and 250 pm (all otherimages).
Single-colourimages are presented in Supplementary Fig. 4. A total of 150
fragments from 36 donors were stained inbatches and analysed as asingle
cohort. Parts of Fig. lawere generated using Servier Medical Art, provided by
Servier, licensed under a Creative Commons Attribution 3.0 unported license.

collected biopsies from treatment-naive patients (n =28) early in their
disease course, methotrexate (MTX)-inadequate responders (n = 27),
and anti-TNF agent-inadequate responders (n =15) as well as from
patients with osteoarthritis (n = 9) (Fig. 1a-d, Supplementary Table1).

We simultaneously characterized the transcriptome and surface
expression of 58 proteins (Supplementary Table 2) inatotal of 314,011
cells (more than 3,800 cells per sample) after quality control (Sup-
plementary Fig.1). We integrated surface marker and RNA data using
canonical correlation analysis, corrected batch effects and defined
six major cell types: T, B and plasma (B/plasma), natural killer (NK),
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Fig.2|Cell-type-specific single-cell analysis captures 77 distinct cell states
inrheumatoid arthritis synovium. a-f, Cell-type-specific reference UMAPs
for T cells (a) B/plasma cells (b), NK cells (c), myeloid cells (d), stromal cells (e)

myeloid, stromal and endothelial cells (Fig. 1e, Extended Data Fig. 1a,
Supplementary Fig. 2 and Supplementary Table 3).

Stratifying synovium by cell-type abundance

To define potentially distinct tissue inflammatory phenotypes, we
hierarchically clustered synovial samples on the basis of the frequency
ofthesix major cell lineages (Fig. 1f,g). On the basis of in-group similar-
ity with bootstrapping, we arrived at six different categories that we
call CTAPs, which are largely robust to adjustment for treatment and
disease duration (Extended Data Fig. 1b-e). We named the CTAPs on
the basis of relatively enriched cell type(s): (1) endothelial, fibroblast
and myeloid cells (EFM); (2) fibroblasts (F); (3) T cells and fibroblasts
(TF); (4) Tand B cells (TB); (5) T and myeloid cells (TM); and (6) myeloid
cells (M) (Extended Data Fig. 1d and Supplementary Table 4). Alterna-
tive clustering schemes using highly variable genes, all transcriptional
states, or separating plasma cells from non-plasmaB cells led to similar
results (Supplementary Fig. 3). Post hoc mapping of the osteoarthritis
samples demonstrates that they most resemble CTAP-EFM and CTAP-F
(Extended Data Fig. 1f). Categorization by effector functions using
pseudo-bulk expression of 55 cytokines, chemokines and growth fac-
torswassimilartothe celllineage-based CTAP categorization (Extended
DataFig.1g,h).

CTAP patterns are consistent across fragments

To examine the robustness of CTAPs across paired biopsy fragments
fromthe samejoint, we performed immunofluorescence microscopy
staining on synovial tissue fragments from a subset of patients (n = 36)
(Fig.1hand Supplementary Fig. 4). We compared cell-type proportions
inindividual high-density biopsy fragments with the disaggregated
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and endothelial cells (f), coloured by fine-grained cell-state clusters. MT,
mitochondrial; MZ, marginal zone; pDC, plasmacytoid dendritic cell.

cellularindexing of transcriptomes and epitopes (CITE-seq)-based cell
frequencies (Extended DataFig. 1i,j). The proportions of cell types fol-
lowed the patterns predicted by the CITE-seq-based CTAP assignment.
Forexample, CD20" (that is, non-plasma) B cells were most frequent in
CTAP-TB, whereas CD68" myeloid cells were most frequentin CTAP-M
and CTAP-TM. As the histology analysis was performed on synovial tis-
sue fragments separate from those used for CITE-seq, these findings
support the consistency of CTAP assignments across a joint.

Arheumatoid arthritis synovial cell-state atlas

We defined finer-grained cell states and quantified cluster abundances
within cell types (Fig. 2 and Extended Data Fig. 2) using canonical vari-
ates from canonical correlation analysis reflecting both RNA and pro-
tein for T and B cells and mRNA principal components for myeloid,
stromal and endothelial cell states (Supplementary Figs. 5 and 6 and
Supplementary Table 3). In total we defined 77 cell states: 24 T cell
clusters (n=94,046 cells), 9 B/plasma cell clusters (n = 30,691), 14 NK
clusters (n = 8,495),15 myeloid clusters (n = 76,181), 5 endothelial clus-
ters (n=25,043) and 10 stromal clusters (n = 79,555) (Fig. 2 and Sup-
plementary Table 5). Cell states associated with rheumatoid arthritis
versus osteoarthritis in a previous study of more than 5,000 synovial
cells were also associated with rheumatoid arthritis in this dataset
(Supplementary Fig. 7 and Supplementary Table 6).

The 24 T cell clusters spanned innate-like states and CD4* and CD8"
adaptive lineages, including states implicated in autoimmunity,
such as regulatory CD4" T cells (T,.,) (T-8 and T-9) and CXCL13- and
IL21-expressing T follicular helper (T;,) and T, cells™ (T-3 and T-7)
(Fig.2aand Extended Data Figs.2 and 3). T-7 exclusively comprised T,
cellsand expressed more /COS, IFNG and GZMA, whereas T-3 contained
Teyand Tpy (Try/Tyy) cells expressing the lymphoid homing marker gene



CCR7.CD8" subsets expressed different combinations of GZMB and
GZMK, reflecting differential cytotoxic potential. Using cell surface
proteindata, we resolved T cell clusters that were not observed in our
earlier study®, including CD4*GNLY* (T-12), double-negative (CD4 CDS8")
Y6 T cells expressing TRDC (T-22 and T-23) and double-negative and
CDS8" T cells expressing ZBTB16 (which encodes PLZF) that resemble
NK T cells and mucosal-associated innate T (MAIT) cells (T-21).

CD20 (encoded by MS4A1)-expressing B cells comprised six clusters,
including IgM*/GHD*TCL1A" naive (B-2), CD24"CD27'IgM* unswitched
memory (B-1)and CD24°CD27*CD11b* (CD11bis also known as ITGAM)
switched memory (B-0) B cells (Fig. 2b and Extended Data Figs.2 and 4).
CD11c¢*CXCR5"" (CD1lc is also known as ITGAX) ABCs (B-5) expressed
LAMP1, HLA-DR and CIITA, indicating B cell antigen presentation®*22,
Unexpectedly, we observed CDIC" B cells (B-3) with CD27 and /IGHD
expression, consistent with recirculating extrasplenic marginal zone
B cells. These and other non-plasma B cells expressed /L6 and TNF
(Extended Data Fig.4d). We identified AICDA*BCL6" germinal centre-like
B cells (B-4), consistent with ectopic germinal centre formation in
synovium?, Plasma cell populations included HLA-DR'IgG" plasma-
blasts (B-7) expressing MKI67, IgM* plasma cells (B-6) and mature
IGHGI'IGHG3' plasma cells (B-8), possibly reflecting both in situ gen-
eration and recruitment from the circulation.

We also captured innate lymphocytes, including CD56"CD16™ NK
(eight clusters), CD56'°"CD16"* NK (four clusters) and CD56'°*CD16 IL7R*
innate lymphoid cells (ILCs) (two clusters) (Fig. 2c and Extended Data
Figs.2and5).CD56"CD16~ NK cells were more abundant (mean 48% per
donor) than CD56'°*CD16" NK cells (36%) and ILCs (13%). CD56"CD16~
NK clusters expressed GZMK, with variable expression of cytotoxic-
ity genes such as GZMB and GNLY. CD56"°*CD16" NK cells exhibited
universally high expression of GZMB, GNLY and PRF1. Several NK cell
clusters highly expressed IFNG (Extended Data Fig. 5d). ILCs, identi-
fied by the absence of CD56 and CD16 with high CD127 (also known
as IL-7Ra) protein, included group 3 ILCs (RORC* NK-12) and group 2
ILCs* (CD161'GATA3" NK-13).

Weidentified 15 myeloid clusters (Fig.2d). CD68 and CCR2 discrimi-
nated tissue macrophages from infiltrating monocytes (Extended
Data Figs. 2 and 6). Three tissue macrophage clusters (M-0, M-1and
M-2) were abundant in both osteoarthritis and rheumatoid arthritis
synovium and expressed the phagocytic factors CD206 (also known
as macrophage mannose receptor (MMR)) and CD163 and MERTK
(Extended DataFig. 6b-d), suggesting a homeostatic debris-clearing
function®?®. LYVEI expression (M-0) is likely to indicate a perivascular
function?. Infiltrating monocytes included a previously described
IL1B*FCNI'HBEGF" pro-inflammatory subset (M-7), probably derived
from classical CD14" monocytes®?and a STATI'CXCL10" subset (M-6)
that expresses interferon-response genes. MERTK*HBEGF* (M-3) and
SPPI* (M-4) subsets expressed SPPI (osteopontin) and other factors
consistent withwound-healing responses?®. Four dendritic cell (DC)
populations corresponded to subsets described by Villani et al.*.
CLECI0A"DC2 and DC3 (M-9 and M-10) and CLEC9A* THBD* DC1 (M-12)
arelikely toactivate CD4" and CD8'T cells, respectively, whereas DC4
(M-11) expressed CD16" monocyte factors and aninterferon signature
(Extended DataFig. 6d). A fifth DC subset (M-14) highly expressed the
endosomal marker LAMP3*.

Fibroblasts segregated broadly into lining (PRG4™) and sublining
(THYI'PRG4"") subsets and NOTCH3'MCAM*(CD146) mural cells (Fig. 2e
and Extended Data Figs. 2 and 7a-f). As previously described, lining
fibroblasts (F-0 and F-1) were depleted in rheumatoid arthritis relative
toosteoarthritis and subdivided into PRG4CLICS' (F-0), PRG4* (F-1) and
RSPO3' (F-8) populations, the last exhibiting an intermediate lining—
sublining phenotype. Sublining fibroblasts separated into HLA-DRA",
CD34" and DKK3' groups®*>**, The CD34" sublining fibroblast cluster
(F-2) highly expressed PI16 and DPP4 (CD26), suggesting an undif-
ferentiated, progenitor-like state. CXCL12" fibroblasts included an
inflammatory CD74"HLA"™ cluster (F-5) and a CXCL12'SFRPI" cluster

(F-6) with the highest levels of /L6, which encodes a proven drug target
in rheumatoid arthritis.

Synovial endothelial cells separated into lymphatic endothelial cells
and blood endothelial cells. Lymphatic endothelial cells (E-4), identi-
fied on the basis of high expression of the lymphatic markers LYVE1
and PROX1, exhibited high expression of CCL21 and FLT4*¢ (Fig. 2f
and Extended Data Figs. 2 and 7g,k). Among blood endothelial cells,
we observed several clusters along an arterial-to-venous axis, includ-
ing NOTCH4" arteriolar (E-3), SPARC" capillary (E-0) and CLU" venular
(E-1and E-2) cells. Arteriolar cells expressed high levels of CXCL12,
LTBP4, NOTCH4 and the NOTCH ligand DLL4. SPARC" capillary cells
expressed collagenand extracellular matrix genes. Venular cells further
subdividedinto L/FR* (E-1) and ICAMI" (E-2) and had high expression of
inflammatory genes such as /L6 and HLA genes, along with genes that
facilitate leukocyte transmigration, such as ICAMI and SELE (E-selectin)
(Extended Data Fig. 7i).

CTAPs are defined by specific cell states

We used co-varying neighbourhood analysis (CNA) to identify
single-cell-resolution ‘neighbourhoods’ associated with individual
CTAPs. We use ‘expanded’ and ‘depleted’ to refer to differences in
relative abundance within a cell type, accounting for age, sex and cell
count per sample. Of note, this may not reflect a difference relative
to total synovial cells. We tested each cell type for associations with
all CTAPs, recognizing that even less enriched cell types may contain
critical subsets.

We observed skewed T and B cell neighbourhoods in CTAP-TB (per-
mutation P=0.046 and 0.03, respectively) (Fig. 3a, Extended Data
Fig.3e, Supplementary Tables 7 and 8). T cell neighbourhoods among
CD4" Ty/Tpy (T-3) and CD4" Ty, (T-7) cells were expanded, whereas
neighbourhoods among cytotoxic CD4"GNLY" (T-12) and CD8*GZMB*
cells (T-15) were depleted. Among B cells, we observed expanded neigh-
bourhoodsin memory B (B-0 and B-1) and ABC (B-5) clusters, whereas
IgG1'IgG3"and IgM" plasma cells (B-8 and B-6) were relatively depleted
(Fig. 3b and Extended Data Fig. 4e). We note that although plasma
cells are depleted among B/plasma cells in CTAP-TB, plasma cells are
enriched among total cells in CTAP-TB (4.1% compared with 0.6-3.1%
in other CTAPs) (Extended Data Fig. 4e,f). Although T, (T-7), T/ Tpy
(T-3)and ABC (B-5) cellsare enriched in CTAP-TB, they are presentinall
six CTAPs (Extended DataFigs.3e and 4e). By contrast, germinal centre
cells (B-4) were almost exclusively found in CTAP-TB (Extended Data
Fig.4e). Consistentwitharole for T,/ Ty and IL-21in ABC generation®,
thefrequency of ABCs (B-5) amongst B/plasma cells correlated with the
proportion of Ty, (T-7) and T,/ Ty, (T-3) among T cells (Pearson r = 0.50,
P=3.7x10"°and Pearsonr=0.24, P=0.034, respectively) (Fig.3cand
Extended Data Fig. 4g).

We hypothesized that the preferential enrichment of T, and T,
cells in CTAP-TB reflected the ability of these subsets to sustain and
activate B cells. To test this hypothesis, we sorted Ty, and Ty, cells and
other memory CD4" T cells, as well as CD45RA" effector memory CD8"
T (Teura) cells and CD45RO* memory CD8* T cells, which are enriched
for GZMB* and GZMK* CD8" T cells, respectively' from blood and
co-cultured them with B cells and staphylococcal enterotoxin B supe-
rantigen (Fig.3d, Extended Data Fig. 4h and Supplementary Fig. 8). T,
and T, cells efficiently induced B cell differentiation into plasmablast
and ABC phenotypes. Notably, non-Tg,/T,, memory CD4" T cells were
alsoable toinduce ABC differentiation, but not plasmablast differen-
tiation. CD8" T cells did notinduce B cell differentiation despite being
functionally potent in cytotoxicity assays.

Tcellneighbourhoods enriched in CTAP-TF (permutation P=0.036)
consisted mainly of cytotoxic CD4*GNLY" (T-12) and CD8'GZMB"*
cells (T-15) as well as naive CD4* and CD8" T cells (T-4 and T-16)
(Fig. 3a, Extended Data Fig. 3e and Supplementary Tables 7 and 8).
GZMB-expressing CD56'°"CD16* NK cells (NK-0-3) were also enriched in
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Fig.3|Different T cell, B celland NK cell populations are associated with
rheumatoid arthritis CTAPs. a, Associations of T cell neighbourhoods with
CTAP-TBand CTAP-TF. Pvalues are from the CNA test for each CTAP within
Tcells. b, Associations of B/plasma cell neighbourhoods with CTAP-TB.

¢, Percentage of Ty, (T-7) asa proportion of T cellsand CD11c' LAMP1' ABCs
(B-5) asaproportion of B/plasma cells for each donor sample. Rand Pvalues
are calculated from Pearson correlation and two-sided t-tests, respectively.
Theshadedregionrepresents 95% confidence interval.d, Plasmablast count
(left), ABC count (centre) or percentage of annexin cells (right) stratified by

CTAP-TF, and the proportion of GZMB* NK cells (NK-0-3) correlated with
the proportion of GZMB' T cells (T-15) (Pearsonr=0.63,P=4.87 x107';
Fig. 3e and Extended Data Fig. 5g). Conversely, GZMK* CD8" T cells
(T-13and T-14) correlated with GZMK* NK cells (NK-4-8, Pearsonr=0.51,
P=1.41x10"%), suggesting that GZMB- and GZMK-expressing CD8" T
and NK cells share a transcriptional programme influenced by their
tissue environments.

CTAP-TF also exhibited specific expansion among CXCL12'SFRPI*
sublining fibroblasts (F-6), which expressed /L6 but not HLA-DR genes
(Fig.4aand Extended DataFig. 7c). By contrast, CTAP-M demonstrated
enrichment of CD74"HL A" sublining fibroblast neighbourhoods (F-5)
among stromal cells (permutation P=107%). We also observed that
SPARC' capillary cells (E-0) were expanded among endothelial cells in
CTAP-M (permutation P=7 x 107 Extended Data Fig. 71).

Among myeloid populations, cell neighbourhoods within SPPI* (M-4)
and MERTK*HBEGF' (M-3) macrophages were enriched in CTAP-M,
suggesting recruitment of inflammatory monocytes and transition to
macrophage function (Fig. 4b). Pro-inflammatory /L1B* macrophages
(M-7), known to be expanded in patients with rheumatoid arthritis
in general®, were less frequent in CTAP-EFM relative to other CTAPs.

Of note, CTAP-M and CTAP-F exhibited contrasting cell enrich-
ments and depletions across three cell types. (Fig. 4a,b and Extended
Data Fig. 71). Specifically, lining (F-0 and F-1) and CD34" sublining
(F-2) fibroblasts (permutation P=3 x 107), MERTK'LYVEI" (M-0) and
MERTK'SI00A8" (M-2) macrophages (permutation P=107),and LIFR*
venular (E-1) and /ICAM1* venular (E-2) endothelial cells were expanded
in CTAP-F (permutation P=3 x 107®) and depleted in CTAP-M.

Given their high plasticity, we hypothesized that monocytes enter-
ingsynovial tissue are shaped by the network of cell types and soluble
factors associated with each CTAP. We tested this concept for CTAP-M
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and CTAP-TM by exposing human blood CD14" monocytes to factors
enriched in these tissues and then examining which CTAP-associated
myeloid state these cells resembled (Extended Data Fig. 6g). We found
that activated CD8" T cell factors that mark CTAP-TM induced a set of
genes that mark the STATI'CXCL10" macrophage state thatis enriched
in CTAP-TM (Extended DataFig. 6h,i). Conversely, factors enriched in
CTAP-M, including M-CSF, TGFf3 and fibroblasts, drove monocytes
towards the MERTK*HBEGF* phenotype thatis enriched in CTAP-M.

Cell states are associated with histology

We used CNA to test for cell neighbourhoods associated with histologic
features of rheumatoid arthritis synovium, including Krennscores and
discrete histologic cell density and aggregate scores reflecting inflam-
matory cellinfiltration and organization (Fig. 5a, Supplementary Fig. 9a
and Methods). Several T cell states were associated with aggregate
scores (permutation P=0.0088), including neighbourhoods among
CD4" T/ Ty, (T-3), GZMK*CDS8* T cells, and some memory CD4" T cells
(Fig.5a, Supplementary Fig. 9b and Supplementary Table 7). A GZMK*
NK cell cluster, NK-4, was associated with both density and aggregate
scores (permutation P=3 x10™*and10™*, respectively) (Supplementary
Fig.9b). Neighbourhoods within STATI*CXCL10"* (M-6), SPP1' (M-4) and
inflammatory DC3 (M-9) (Fig. 5aand Supplementary Fig. 9b) were asso-
ciated withbothaggregate and density scores (permutation P= 0.006
and P=0.005, respectively). AmongB cells, IgM" plasma cells (B-6), plas-
mablasts (B-7) and ABCs (B-5) were associated with aggregate scores
(permutation P=0.007) (Fig. 5a and Supplementary Fig. 9b). These
disparate cell-state associations with aggregate scores probably reflect
the diverse composition of aggregates, which canbe T cell-dominant,
plasma cell-dominant or T and B cell follicles®*.
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Fig. 4 |Different stromal, myeloid and endothelial cell populations are
associated withrheumatoid arthritis CTAPs. a, Association of stromal
cellneighbourhoods with CTAP-TF, CTAP-M and CTAP-F. b, Association of
myeloid cell neighbourhoods with CTAP-EFM, CTAP-M and CTAP-F for all CNA
results. Cellsin UMAPs are coloured red (positive) or blue (negative) if their
neighbourhood is significantly associated with the CTAP (FDR < 0.05), and grey
otherwise. Distributions of neighbourhood correlations are shown for clusters
withmore than50% of neighbourhoods correlated with the CTAPat FDR < 0.05.
Global Pvalues were obtained based on the permutation testing from the CNA
package.

After accounting for age, sex, cell count and clinical collection
site (Methods), we found that CTAPs account for 18% of variance of
histologic density (P=0.0035) and 18% of variance for aggregates
(P=0.0059), with CTAP-TB and CTAP-TF having the highest scores for
both (Extended Data Fig. 8a,b). Consistent with these observations,
CTAPs are associated with Krenn inflammation scores (P=4 x10™),
but not with Krenn lining scores (P = 0.11) (Extended Data Fig. 8a,b).
Ultrasound measurements in the biopsied joint did not vary by CTAP
(Extended Data Fig. 8b). In our dataset, we observed no association
between Krenn inflammation and power doppler scores, consistent
with some previous studies**"** (Extended Data Fig. 8c).

CTAPs are largely independent of clinical metrics

Cyclic citrullinated peptide (CCP) autoantibodies are known to con-
fer a higher risk of severe disease and radiographic progression®.
CCP titre values differed across CTAPs (P=0.023,18% variance), with
CTAP-M having the lowest CCP titres, even after restricting the analy-
sis to seropositive patients (P=0.0047) (Extended Data Fig. 8a,d).
HLA-DRBI is the strongest genetic rheumatoid arthritis risk fac-
tor for seropositive disease, yet we did not find that HLA-DRBI risk
alleles were associated with a particular CTAP, although there was a
trend toward association with CTAP-TB (Extended Data Fig. 8e and
Methods).

We did not find a significant association between CTAPs and dis-
ease activity score-28 for rheumatoid arthritis with C-reactive protein
(DAS28-CRP) or CDAI (Extended Data Fig. 8b), although our patient
cohortisnotideal for testing such associations because it only includes
patients with high disease activity. CTAPs were also independent of
other clinical factors, smoking history and sex, and mostly independ-
ent of anatomic category and clinical site (Extended Data Fig. 8b,f-1
and Supplementary Table 9). Patients with CTAP-EFM had statistically

nonsignificant trends to be older, have longer-standing rheumatoid
arthritis and be inadequate responders to TNF inhibitors (Extended
Data Fig. 8m-p).

CTAPs have disease-relevant cytokine profiles

We next analysed transcript levels of cytokines, chemokines, and
their receptors, recognizing that these transcripts are often sparse in
single-cell RNA-seq data (Supplementary Fig.10). Most cytokines and
chemokines are detected predominantly in one cell type, although
some key cytokines were produced by multiple cell types (Extended
DataFig.9a,b). Forexample, we detected TNFinroughly equal numbers
of T cells and myeloid cells, whereas fibroblasts, endothelial cells and
B cells dominated among cells with detectable /L6.

Next, we correlated CTAP neighbourhood association scores with
the expression of key cytokines and receptors to identify soluble
factors produced by CTAP-associated cell states. For example, as
predicted, CTAP-TB, enriched for T,,/T;, cell states, had T cell neigh-
bourhood association scores that correlated with expression of the
T/ Toymarker CXCLI3 (Fig. 3a and Extended DataFig. 9¢). By contrast,
CTAP-TF-associated GZMB' T and NK cell neighbourhoods had associa-
tion scores correlating with the expression of IFNG and TNF (Fig. 3a,e
and Extended Data Fig. 9¢), suggesting that these cytokines may be
key molecular drivers of CTAP-TF.

In some CTAPs, this analysis revealed potential cytokine networks.
For example, in CTAP-M, myeloid neighbourhood association scores
correlated with expression of angiogenic factor VEGFA, whereas
endothelial cell neighbourhood association scores correlated with
expression of KDR (also known as VEGFR2), potentially explaining
the observed enrichment of capillaries in this CTAP (Extended Data
Figs.7land 9c). By contrast, in CTAP-F,enriched LIFR" and ICAMI' venu-
lar endothelial cell neighbourhoods expressed high levels of CCL14,
whose cognate receptor CCRI was highly expressed by MERTK" mac-
rophage neighbourhoods, which are also enriched in CTAP-F (Fig. 4b
and Extended Data Fig. 7l and Fig. 9c). Cell-cell communication analysis
confirmed these putative interactions (Supplementary Fig. 11).

Our study included three patients with replicate biopsies obtained
from the same joint 98 to 190 days after the initial biopsy. Cell-type
composition of repeat biopsies was similar to the initial biopsy (per-
mutation P=0.073) (Supplementary Fig.12a,b), but more samples are
needed to understand how dynamic CTAPs are.

Mapping CTAPs to other patient cohort data

To enable investigation of these and other CTAP-related questions in
larger studies, we examined whether samples can be classified into
CTAPs using lower-resolution technologies such as flow cytometry and
bulk tissue RNA-seq. We first built anearest-neighbour classifier for flow
cytometry data and were able to accurately replicate CITE-seq-based
CTAP assignments (accuracy = 87%; Extended Data Fig. 9d, Supple-
mentary Fig.12c¢,d and Supplementary Table 10).

We next developed a method to classify CTAPs using bulk RNA-seq
data of intact synovial tissue from a recent clinical trial®. CTAP classi-
fication based onbulk RNA-seq agreed with the CITE-seq-based CTAP
assignment for 6 out of 7 samples in the present study that were also
analysed with bulk RNA-seq (Extended Data Fig.10a).

We applied our CTAP classification algorithm to bulk RNA-seq pro-
files from the R4RA clinical trial comparing rituximab and tocilizumab
for the treatment of patients with rheumatoid arthritis with inade-
quate response to TNF inhibitor therapy** (n =133). The distribution
of CTAPs differs between these datasets, probably reflecting differ-
encesincohortrecruitmentcriteria (Extended DataFig.10b). Asin our
cohort, we found no association between CTAP assignment and disease
activity or between treatment response and disease activity (Extended
DataFig.10c,d), supporting our hypothesis that CTAPs reflect distinct
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inflammatory phenotypes driving arthritis rather than differences in
clinical disease activity.

Toinvestigate whether CTAPs change over time, we applied our CTAP
classificationalgorithmto 45 patients fromthe R4RA trial who had syno-
vial tissue biopsies before and 16 weeks after starting treatment. CTAPs
were dynamic during this period, with 30 out of 45 (67%) patients chang-
ing to a different CTAP (Fig. 5b and Extended Data Fig. 10e). Patients
in the tocilizumab and rituximab treatment arms exhibited similar
frequencies of CTAP change (20 out 0f 29 (69%) and 10 out of 16 (63%)
patients, respectively) (Extended Data Fig. 10f-i). Among patients
who changed CTAPs, CTAP-F was the most common CTAP at week 16
(16 out 0f 30 (53%)), consistent with rituximab and tocilizumab target-
ing inflammatory cells and pathways.

Response to biologic therapy varies by CTAP

To determine whether CTAPs can predict the response to these treat-
ments, we used our algorithmto determine the CTAPs of pre-treatment
bulk RNA-seq for R4RA samples (n =133). We then compared the fre-
quencies of responders (defined as at least 50% improvement in CDAI)
versus non-responders among the CTAPs (Extended Data Fig.10j,k). We
found thatresponses varied by CTAP (P = 0.0105), with CTAP-F having
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thebaseline (week 0) samples from the R4RA study (n=133). The percentage
ofvariance explained by CTAPs alone and Pvalue are calculated with ANOVA
tests. Dotsrepresent odds ratios and bars represent 95% confidence intervals.
d, Significance of correlations between rheumatoid arthritis risk gene
expression and CTAP-associated cells. Significance levels are showninred
(P<0.01),yellow (0.01<P< 0.05), and white (P> 0.05). Genes with low counts
(more than one unique molecularidentifier amonglessthan 5% of cellswith a
given celltype) were not analysed in that cell type (grey boxes). Bottom, UMAPs
displaying normalized expression levels of selected genesin T cells (/L6R and
LEFI), B cells (WDFY4) and endothelial cells (PRKCH).

the poorest response to both treatments, even after controlling for
covariates (odds ratio = 0.2619, P= 0.0403; Fig. 5c).

CTAP-enriched cell states expressrisk genes

We next tested whether genes implicated by recent multi-ancestry
rheumatoid arthritis genetic studies are preferentially expressed by
cell states associated with specific CTAPs**¢. We identified 71 genes
that were likely to be causal, all of which were detected in one or
more cell types in our dataset (Methods, Supplementary Fig.13a and
Supplementary Table 11).

We identified 48 genes with expression that was significantly posi-
tively correlated with CNA loadings for one or more CTAPs for a cell type
(P<0.05, controlling for expression level), indicating that cell states
expanded in that CTAP specifically express the rheumatoid arthritis
riskgene (Fig. 5d). Thisis significantly higher than predicted by chance
(median =34, permutation P < 0.01; Supplementary Fig.13b,c). Some
cell types expressed different rheumatoid arthritis genes in different
subsets of cells (for example, LEF1in CTAP-TF-associated naive states
and /L6R in CTAP-TB-associated T,/ T, states). HLA-DRBI expression
was correlated with CTAP-associated cell states in several cell types
(Fig.5d). CTAP-associated rheumatoid arthritis risk genes may also be



expressed agnostic of CTAPinagiven cell type, such as IL6R in myeloid
cells (Supplementary Fig.13d).

Some genes point to signalling pathways that may be important
in a specific CTAP, such as VEGF in CTAP-M (Extended Data Fig. 9¢).
PRKCH—which encodes protein kinase C (PKC)-n, amediator of VEGF-
induced endothelial cell differentiation*’—is highly expressed in
endothelial cell states expanded in CTAP-M, which has high expres-
sion of VEGF receptor genes KDR and FLT1 among expanded endothelial
cell states and VEGFA among expanded myeloid cell states (Fig. 5d and
Supplementary Fig. 13e-g).

Discussion

We constructed a comprehensive rheumatoid arthritis synovial
tissue reference of more than 314,000 single cells which revealed
diverse cellular composition that we characterized into six CTAPs.
Previously identified pathogenic cell states in rheumatoid arthritis
are expanded in specific CTAPs. For example, CD4" T, and T, cells,
which are enriched among T cells in rheumatoid arthritis compared
with osteoarthritis, are present in synovium of all CTAPs but are
most expanded in CTAP-TB. Our work also suggests the presence of
extra-follicular activation pathways, especially in CTAP-TB, given the
rarity of germinal centre dark-zone B cells and abundance of ABCs.
Our study also provided more granular insights into previously
identified pathogenic cells. For example, inflammatory sublining
fibroblast subsets CXCL12" and CD74"HLA" cells were enriched in
CTAP-TF and CTAP-M, respectively. MERTK*HBEGF" and SPP1" mac-
rophages were also enriched in CTAP-M, probably reflecting differ-
ent inflammatory axes. These and other instances of co-enriched
populations (for example, GZMK* versus GZMB*CD8" T and NK cells)
inspire new questions about cell-cell interactions underlying inflam-
matory phenotypes in rheumatoid arthritis and other tissues and
diseases.

We found that CTAPs are associated with histologic and serologic
(CCP) parameters, in line with studies*® that report increased lym-
phocyte infiltration (suggesting CTAP-TB, CTAP-TF or CTAP-TM) in
CCP-positive synovium compared with CCP-negative synovium. Our
finding that CTAP-M, and not CTAP-F or CTAP-EFM, was associated
with CCP-negative status warrants further investigation in future
studies.

CTAPs canbeinferred fromsingle-cell RNA-seq, bulk RNA-seq or flow
cytometry data to provide cellular and molecular insights in clinical
trials. Even within the more limited clinical diversity of the R4RA
cohort*, we found that CTAPs can change over time with treatment, and
that CTAP-F was associated with poor clinical response. The dynamic
heterogeneity of rheumatoid arthritis synovitis may explain the obser-
vationthat clinical measures of patients treated with TNF inhibitors do
not fallintoabimodal distribution of responders and non-responders®.
Itis possible that specific CTAPs are more likely to respond to specific
therapies that preferentially target infiltrating cell types and relevant
pathways. We anticipate that future longitudinal studies will investigate
the association of CTAP changes with treatment effectsacross alarger
array of treatments.

The CTAP paradigm provides a tissue classification system that cap-
tures coarse cell-type and fine cell-state heterogeneity. This model has
the potential to serve as a powerful prototype to classify other types
oftissue inflammation, including otherimmune-mediated diseases. A
deeper understanding of the heterogeneity of tissue inflammationin
rheumatoid arthritis and other autoimmune diseases may provide new
insights into disease pathogenesis and reveal new treatment targets,
and key elements of precision medicine.
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Data availability

CITE-seq single-cell expression matrices and sequencing and bulk
expression matrices are available on Synapse (https://doi.org/10.7303/
syn52297840). Associated genotype and clinical data are available
through the Arthritis and Autoimmune and Related Diseases Knowl-
edge Portal (ARK Portal, https://arkportal.synapse.org/Explore/Data-
sets/DetailsPage?id=syn52297840). A cell browser website https://
immunogenomics.io/ampra2/is available to visualize our data and
results. AMP Phase 1single-cell data fromref. 8 are available on Immport
(SDY998). PEAC clinical trial RNA-seq data fromref. 6 are available on
ArrayExpress (E-MTAB-6141). R4RA clinical trial RNA-seq data from
ref. 44 are available on ArrayExpress (E-MTAB-11611). Single-cell and
bulk RNA-seq datawere aligned to GRCh38 (Ensembl 93), available as
partof Cell Ranger v. 3.1.0.

Code availability

The source code for the analyses is available at https://github.com/
Immunogenomics/RA_Atlas_CITEseq/ and https://zenodo.org/
record/8118599.
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Extended DataFig.1|Robust CTAP definition and quantitative cellular
histology analysis.a, UMAPs of CITE-seq antibody-based expression of
cell-typelineage protein markers. Cells are colored based on expression from
blue (low) toyellow (high). b, Mean Jaccard similarity coefficient to test CTAP
stability by bootstrapping 10,000 times for each tested number of patient
subgroupsranging from2to10.c, Mean Jaccard similarity coefficient for each
CTAP, comparing full clustering and 10,000 bootstrapped datasets. d, Average
proportions of each major cell type among samples in each CTAP. Overall
average proportions across allthe samples are shown as acomparator. Asterisk
represents the proportion thatis greater than the overall average for that cell
type, e, PCA of samples based on cell-type abundances, adjusting for disease
durationand treatment. Each dot representsasample, plotted based onits
PCland PC2projections and colored by CTAPs. f, Projection of OAsamples
onto PCA of samples based on cell-type abundances from Fig. 1j. OA samples
aremarked with gray points; RAsamplesare colored based on CTAP (left) orin
blue (right). g, PCA of samples based on pseudo-bulk gene expression of 55

solubleimmune mediators. Each dot representsasample, plotted based onits
PCland PC2projections and colored by CTAPs. h, Heatmap of pseudo-bulk
gene expression of solubleimmune mediators across samples, grouped by
CTAP.Boxesare colored based on the gene’s scaled pseudo-bulk expression
across samples. i, Bar graph of the proportion of total cells located in high-
density and low-density fragments, as captured by histology imaging.
Quantitation of total cellular composition demonstrated that fragments with
highest cell density (top 50%) contained 86% of total cells and are therefore
likely the primary drivers of CTAP classification. j, Box plots of the proportion
of cellsin high-density fragments (N = 76) expressing each marker in histology
imaging, stratified by CTAP. Points represent outlier samples (> 1.5*IQR from
median). Box plots show median (vertical bar), 25thand 75th percentiles
(lower and upper bounds of the box, respectively) and 1.5 x IQR (or minimum/
maximum values; end of whiskers). P-values are calculated with one-way
ANOVA tests with Bonferronicorrection.
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Extended DataFig.2|Relative enrichment of fine-grain cell clusters across CTAPs and OA. a-f, Heatmaps show the average proportions of each clusterin the
givencell type across patient samplesineach RACTAP and OA, scaled within each cluster.
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Extended DataFig. 3| T cell-specific analysis. a, T cell UMAP colored by
fine-grained cell-state clusters, b, Expression of selected surface proteins
amongT cells. Cells are colored from blue (low) to yellow (high), c, Heatmap
of surface proteinexpressioninT cell clusters colored according to the
average normalized expressionacross cellsin the cluster, d, Heatmap of gene
expressionin T cell clusters colored according to the average normalized
expressionacross cellsinthe cluster, scaled for each gene across clusters,

e, Distribution of T cells across clusters, stratified by CTAP. The size of each
segmentofeachbar correspondsto the average proportionof cellsin that cluster
across donors from that CTAP.f, Number of T cells per individual, stratified by
CTAP. Points representindividuals (N=82); OA(N=9), (EFM(N=7),F (N=11),
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Extended DataFig. 4 |B/plasma cell-specific analysis. a, B/plasma cell
UMAP colored by fine-grained cell state clusters, b Expression of selected
surface proteins among B/plasma cells. Cells are colored from blue (low) to
yellow (high), ¢, Heatmap of surface protein expressionin B/plasma cell
clusters colored according to the average normalized expression across cells
inthe cluster, d, Heatmap of gene expressionin B/plasma cell clusters colored
accordingto the average normalized expressionacross cellsin the cluster,
scaled foreachgeneacross clusters, e, Distribution of B/plasma cells across
clusters, stratified by CTAP. The size of each segment of each bar corresponds
totheaverage proportionof cellsin that cluster across donors from that CTAP.
f,Number of B/plasma cells perindividual, stratified by CTAP. Points represent

individuals (N=82); OA(N=9),EFM(N=7),F(N=11), TF(N=8), TB (N=14),
TM(N=12), M (N =18). Box plots show median (vertical bar), 25th and 75th
percentiles (lower and upper bounds of the box, respectively) and 1.5 x IQR

(or minimum/maximum values; end of whiskers). g, Heatmap of correlations
betweenselect T and B cell subsets, colored by Pearson correlation between
per-donor proportions. h, Schematic representation of the experimental
design of the T cell functional assays and representative flow cytometry plots
showing gating of plasmablasts (CD27" CD38" CD19* cells), ABC B cells (CD11c*
CD21 CD19* cells) and dead target cells (Annexin V*). Parts of this schematic
were created using BioRender.
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Extended DataFig. 5| NK cell-specific analysis. a, NK cell UMAP colored by
fine-grained cell state clusters, b, Expression of selected surface proteins or
mRNA transcriptsamong NK cells colored from blue (low) to yellow (high),

¢, Heatmap of surface protein expressionin NK cell clusters colored according
totheaverage normalized expression across cellsin the cluster,d, Heatmap

of gene expressionin NK cell clusters colored according to the average
normalized expressionacross cellsin the cluster, scaled for each gene across
clusters, e, Distribution of NK cells across clusters, stratified by CTAP. The size

of each segment of each bar correspondsto the average proportionofcellsin
that clusteracross donors fromthat CTAP. f, Number of NK cells perindividual,
stratified by CTAP. Points representindividuals (N=82); OA(N=9),EFM (N =7),
F(N=11), TF(N=8),TB(N=14), TM(N =12), M (N =18). Box plots show median
(vertical bar), 25th and 75th percentiles (lower and upper bounds of the box,
respectively) and 1.5 x IQR (or minimum/maximum values; end of whiskers).
g,Heatmap colored by Pearson correlation between per-donor CD8' T cell and
NK cell cluster abundances.
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Extended DataFig. 6 | Myeloid cell-specific analysis. a, Myeloid cell UMAP
colored by fine-grained cell state clusters, b, Expression of selected surface
proteins among myeloid cells colored from blue (low) to yellow (high),
c,Heatmap of surface protein expression in myeloid cell clusters colored
accordingtothe average normalized expressionacross cellsin the cluster,

d, Heatmap of gene expressionin myeloid cell clusters colored according to
the average normalized expression across cellsin the cluster, scaled for each
geneacrossclusters, e, Distribution of myeloid cells across clusters, stratified
by CTAP. The size of each segment of each bar corresponds to the average
proportion of cellsin that cluster across donors from that CTAP. f, Number of
myeloid cells perindividual, stratified by CTAP. Points representindividuals
(N=82);0A(N=9),EFM(N=7),F(N=11), TF(N=8),TB(N=14), TM (N=12),

M (N =18). Box plots show median (vertical bar), 25th and 75th percentiles
(lower and upper bounds of the box, respectively) and 1.5 x IQR (or minimum/
maximum values; end of whiskers). g, Schematic representation of the
experimental design of the myeloid cell assays. Parts of this schematic were
created using BioRender. h, Linear discriminant analysis classification of bulk
RNA-seqobtained from myeloid cells cultured in the indicated conditions.
Each condition was performed with three biological replicates, and cluster
proportionsineach pie chart were calculated from the mean of the posterior
probability values across replicates. i, Heatmap showing expression of
selected CTAP-relevantgenesin bulk RNA-seqof blood monocytes culturedin
theindicated conditions. Columns correspond to three biological replicates
foreach condition, and boxes are colored by normalized gene expression.
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7 | Stromal- and endothelial-specific analysis. a, Stromal
cellUMAP colored by fine-grained cell state clusters, b, Expression of selected
surface proteins among stromal cells colored from blue (low) to yellow (high),
¢, Heatmap of surface protein expression in stromal cell clusters colored
accordingto the average normalized expressionacross cellsin the cluster,

d, Heatmap of gene expressioninstromal cell clusters colored according to the
average normalized expression across cellsin the cluster, scaled for each gene
across clusters, e, Distribution of stromal cells across clusters, stratified by
CTAP.Thesize ofeach segment of each bar corresponds to the average
proportion of cellsin that cluster across donors fromthat CTAP, f, Number of
stromal cells perindividual, stratified by CTAP. Points represent individuals
(N=82);0A(N=9),(EFM(N=7),F(N=11),TF(N=8), TB(N=14),TM(N=12),

M (N =18). Box plots show median (vertical bar), 25th and 75th percentiles
(lower and upper bounds of the box, respectively) and 1.5 x IQR (or minimum/
maximum values; end of whiskers), g, Endothelial cell UMAP colored by fine-
grained cell state clusters, h, Expression of selected surface proteinsamong
endothelial cells colored fromblue (low) to yellow (high), i, Heatmap of gene

expressionin endothelial cell clusters colored according to the average
normalized expressionacross cellsin the cluster, scaled for each gene across
clusters, j, Distribution of endothelial cells across clusters, stratified by CTAP.
Thesize of each segment of each bar corresponds to the average proportion of
cellsinthat cluster across donors fromthat CTAP.k, Number of endothelial
cells perindividual, stratified by CTAP. Points representindividuals (N = 82);
OA(N=9),EFM(N=7),F(N=11), TF(N=8), TB(N=14),TM(n=12), M(N =18).
Box plots show median (vertical bar), 25th and 75th percentiles (lower and
upper bounds of the box, respectively) and 1.5 x IQR (or minimum/maximum
values; end of whiskers). 1, Association of endothelial cell neighborhoods with
CTAP-Mand CTAP-F.For these CNA results, cellsin UMAPs are colored inred
(positive) or blue (negative) if their neighborhood is significantly associated
withthe CTAP (FDR < 0.05), and gray otherwise. Distributions of neighborhood
correlations are shown for clusters with >50% of neighborhoods correlated
withthe CTAP at FDR < 0.05; global p-values were obtained based on the
permutation testing from the CNA package.
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Extended DataFig. 8| Association of single-cell RA CTAPs with different
clinical characteristics. a, Associations between clinical features and CTAPs
(N =70), adjusting covariates for age, sex, cellnumber, and clinical collection
site. Percentage of variance explained by CTAPs alone and p-value are calculated
with ANOVA tests. Points represent odds ratios and bars represent 95%
confidenceintervals. b, Clinical, histologic, and ultrasound parameters of
patientsin each CTAP.Forallbox plots, each dot represents an individual

(N =70); boxes show median (vertical bar), 25th and 75th percentiles (lower and
upper bounds of the box, respectively) and 1.5 x IQR (or minimum/maximum
values; end of whiskers), ¢, Dotplot of Krenn inflammation versus power doppler
scores. Each pointisa patient.d, CCPlevels amongseropositive patients alone
(N =59). Pointsrepresent individuals and box plots show median (vertical bar),
25thand 75th percentiles (lower and upper bounds of the box, respectively)
and 1.5 xIQR (or minimum/maximum values; end of whiskers)., e, Corrected RA
HLA-DRBI risk scores and their associations with CTAPs, percent of variance
explained by CTAPs only and p-value are calculated with ANOVA test, f, Clinical,

demographic, and histologic metrics plotted by percentage of variance
explained by CTAPs and the ANOVA p-value for its association with CTAPs.
Featuresinredaresignificantatp <0.05.g, CTAP frequency amongseropositive
(CCP-positive, RF-positive, or both) versus seronegative patients. h, CTAP
frequency by sex. i, CTAP frequency by smoking history, j, CTAP frequency

by anatomicsite of synovial biopsy. k, Number of samples per CTAPineach
collection/cryopreservationsite.l, Number of patient samples for each CTAP
between biopsy and synovectomy, m-n, Association of age and RA duration
with CTAPs (N =70), adjusting covariates for age, sex, cellnumber, and clinical
collectionsite. Points represent odds ratios and bars represent 95% confidence
intervals. Percentage of variance explained by CTAPs alone and p-values are
calculated with one-way ANOVA tests. 0, Sample distributions across CTAPs
byrecruitment cohort, p, Heatmap of clinical variables for patient samples
grouped by CTAP. Boxes are colored based on z-score of the metric across
samples. “X” represents missing data.
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Extended DataFig.10|Assigning CTAP labels to bulk RNA-seq samples
and clinical association analysis. a, Confusion matrix showing CTAP
assignment by the single-cell CITE-seq panel (gold standard) versus
classification of synovial tissue bulk RNA-seq obtained from the same
individuals (N=7).b, Patients per CTAP categoryinthe current AMP study,
which enrolled aclinically diverse patient cohort, versus the published R4RA
study, whichrestricted enrollment to patients with inadequate response to
TNFinhibitor therapies. ¢, Baseline DAS28-CRP scores stratified by predicted
CTAP (N =133 patients).d, Baseline DAS28-CRP score stratified by clinical
responsestatus (> 50% improved CDAl after treatment) (N =133 patients).
Incandd, Pointsrepresent individuals and box plots show median (vertical bar),

25thand 75th percentiles (lower and upper bounds of the box, respectively)
and1.5xIQR (or minimum/maximum values; end of whiskers). e, Confusion
matrix showing predicted CTAP assignment of pre-treatment (week 0) and
post-treatment (week 16) synovial tissue samples obtained from 45 patients.
f-g, Confusion matrix and alluvial plot showing predicted CTAP assignment
before and after treatment with rituximab (N = 29). h-i, Confusion matrix and
alluvial plot showing predicted CTAP assignment before and after treatment
with tocilizumab (N =16). j, Graph of responder and non-responders stratified
by CTAP (N =133) amongall patientsin the R4RA study. k, Graph of responders
and non-responders among patients receiving tocilizumab (left, N = 65) or
rituximab (right, N = 68), stratified by CTAP.
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Software and code

Policy information about availability of computer code

Data collection Clinical data were collected using REDCap v. 6.9.0 onwards. Flow cytometry data of disaggregate synovial tissue were acquired on a BD
FACSAria Fusion using FACSDiva software v. 8.0.1. For functional experiments, T cell and B cell subsets were isolated using a BD FACSAria
Fusion sorter, and analytic flow cytometry was performed on a BD Fortessa analyzer (B cell differentiation) or a BD Canto Il analyzer
(cytotoxicity assays), all using FACSDiva software.

Data analysis Flow cytometry data were analyzed with FlowJo v10.6. Immunofluorescence microscopy images were analyzed with the Visiopharm platform
(version 2022.10). Single-cell RNA-seq data were aligned and quantified with Cell Ranger (v. 3.1.0). Bulk RNA-seq data were aligned and
quantified with STAR (v. 2.5.3). Other analyses were conducted with R (version 3.6 and 4.0) and Python (version 3.10).
Scripts to reproduce analyses are available on GitHub (https://github.com/immunogenomics/RA_Atlas_CITEseq) and Zenodo (https://
zenodo.org/record/8118599).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

CITE-seq single-cell expression matrices and sequencing, bulk expression matrices, genotyping, and clinical data are available on Synapse (doi:10.7303/
syn52297840). A cell browser website https://immunogenomics.io/ampra2/ is available to visualize our data and results. AMP Phase 1 single-cell data from Zhang*,
Wei*, Slowikowski*, Rao*, Fonseka*, et al. 2019 are available on Immport (accession: SDY998). PEAC clinical trial RNA-seq data from Lewis, et al. 2019 are available
on ArrayExpress (accession: E-MTAB-6141). R4RA clinical trial RNA-seq data from Rivellese*, Surace*, et al. 2022 are available on ArrayExpress (accession: E-
MTAB-11611). Single-cell and bulk RNA sequencing data were aligned to GRCh38 (Ensembl 93), available as part of Cell Ranger v. 3.1.0.
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Sample size Sample size (n = 82) was based on sample recruitment. No formal power calculations were performed because this was a discovery cohort
with multiple advanced technical output measures. Cohort size was determined by approximate estimates of power for identifying differences
between the treatment-naive, methotrexate inadequate-responder, and TNF inhibitor inadequate-responder groups.

Data exclusions  Biopsies that lacked synovial tissue on histological exam were excluded from the pipeline. Biopsies that yielded <400 live cells by flow
cytometric sorting were excluded. Quality control of the sequencing data excluded cells with fever than 500 genes or more than 20% of UMlIs
from mitochondrial genes. Doublets were removed using Scrublet and a linear-discriminant analysis-based classifier. Three samples with
<40% of cells passing QC were excluded from the analysis.

Replication CITE-seq was conducted once per sample, with a total of 82 samples. CITE-seq data were validated by comparing cell type proportions based
on CITE-seq to those calculated in the same samples with flow cytometry (n = 18). All attempts at replication were successful.
For the T/B cell co-culture experiment, the experiment was conducted independently on three biological replicates.
For the myeloid differentiation experiment, samples were randomly assigned to experimental groups (i.e., stimulus conditions). There were
three biological replicates for each stimulus condition.

Randomization  Samples were randomized into tissue disaggregation processing batches based on treatment group and collection site. Other experiments did
not have experimental groups, and there were no treatment interventions provided by this study, so randomization was not otherwise

relevant.

Blinding No blinding was performed in this study due to the cross-sectional nature of the study. There were no treatment interventions provided by
this study. Cell clustering and CTAP categorization were performed without regard to treatment history or other clinical parameters.
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Antibodies

Antibodies used

Validation

An anti-CD235 antibody (1:100, clone 11E4B-7-6 (KC16), 1IM2211U, Beckman Coulter) was included in live cell sorting to exclude red
blood cells.

Antibodies used for flow cytometry are listed with clone, dilution and catalog number (as in Supplementary Table 10): CD3 (UCHT1,
1:50, 300460), CD4 (OKT4, 1:50, 317416), CD8A (SK1, 1:100, 344732), CD11c (3.9, 1:50, 301624), CD14 (M5E2, 1:200, 301852), CD19
(HIB19, 1:50, 302240), CD27 (M-T271, 1:100, 356406), CD31 (WMS59, 1:200, 303134), CD45 (HI30, 1:200, 304006), CD9O (5E10,
1:200, 328124), CD146 (P1H12, 1:200, 361004), HLA-DR (L243, 1:50, 307644), PD-1 (EH12.2H7, 1:50, 329950), all purchased from
Biolegend.

CITE-seq was performed using the following TotalSeg-A antibodies from BiolLegend, listed with clone and catalog numbers (barcode
sequences, and dilutions in Supplementary Table 2): CD107a/LAMP-1 (H4A3, 328647); CD314/NKG2D (1D11, 320835); CD19 (HIB19,
302259); CD8a (RPA-T8, 301067); CD21 (Bu32, 354915); IgG Fc (M1310G05, 410725); CD209/DC-SIGN (9E9AS8, 330119); EGFR (AY13,
352923); CD196/CCR6 (GO34E3, 353437); CD1c (L161, 331539); CD309/VEGFR2 (7D4-6, 359919); CD127/IL-7Ra (A019D5, 351352);
CD273/B7-DC/PD-L2 (24F.10C12, 329619); CD226/DNAM-1 (TX25, 337111); CD278/ICOS (C398.4A, 313555); CD119/IFN-y R a chain
(GIR-208, 308607); CD274/B7-H1/PD-L1 (29E.2A3, 329743); CD3 (UCHT1, 300475); CD55 (JS11, 311317); IgM (MHM-88, 314541);
CD155/PVR (SKII.4, 337623); CD112/Nectin-2 (TX31, 337417); CD4 (SK3, 344649); CD11c (S-HCL-3, 371519); CD34 (581, 343537);
CD90/Thy1 (5E10, 328135); CD45RA (HI100, 304157); CD16 (3G8, 302061); CD45RO (UCHL1, 304255); CD20 (2H7, 302359);
Podoplanin (NC-08, 337019); CD140a/PDGFRa (16A1, 323509); CD146 (P1H12, 361017); CD195/CCR5 (J418F1, 359135); CD69 (FNS50,
310947); CD161 (HP-3G10, 339945); HLA-DR (L243, 307659); CD64 (10.1, 305037); CD24 (ML5, 311137); CD192/CCR2 (K036C2,
357229); CD163 (GHI/61, 333635); CD44 (IM7, 103045); CD141/Thrombomodulin (M80, 344121); CD27 (LG.3A10, 124235); CD206/
MMR (15-2, 321143); Folate Receptor B/FR-B (94b/FOLR2, 391707); CD45 (2D1, 368543); CD31 (WM59, 303137); CD11b (ICRF44,
301353); CD68 (Y1/82A, custom conjugate); CD38 (HIT2, 303541); CD144/VE-Cadherin (BV9, 348517); CD304/Neuropilin-1 (12C2,
354525); CD86 (IT2.2, 305443); CD279/PD-1 (EH12.2H7, 329955); CX3CR1 (KO124E1, 355709); CD56/NCAM (QA17A16, custom
barcode); CD14 (63D3, custom barcode). Antibodies against CD107a (LAMP-1), CD314 (NKG2D), CD19, CD8a, CD21, IgG Fc, CD209
(DC-SIGN), EGFR, CD196 (CCR6), CD1c, CD309 (VEGFR2), CD127 (IL-7Ra), CD273 (B7-DC, PD-L2), CD226 (DNAM-1), CD278 (ICOS),
CD119 (IFN-y R a chain), CD274 (B7-H1, PD-L1), CD3, CD55, IgM were used at a dilution of 1:250 (0.2 ug per 100 uL staining reaction),
whereas the remaining antibodies were used at a dilution of 1:50 (1 ug per 100 ulL staining reaction).

Antibodies used for immunofluorescence microscopy studies include CD3 (1:100, Clone M-20, sc-1127, Santa Cruz Biotechnology),
CD138 (1:50, PA5-32305, Thermo Fisher Scientific), and CD20 (1:50, Clone L26, GTX29475, GeneTex), CLIC5 (1:50, clone 1E6,
SAB1402589, Sigma), CD68 (1:50, clone 514H12, CD68-L-CE, Leica) CD3 (1:25, clone LN10, CD3-565-L-CE, Leica), HLA-DR (1:200,
clone EPR3692, ab92511, Abcam), CD34 (1:100, clone QBEnd/10, END-L-CE, Leica) and CD90 (1:200, clone D3V8A, 13801, Cell
Signaling Technology). All antibodies are listed in the following format (dilution, clone, catalog number, company).

Antibodies used for sorting T cell subsets for the T cell functional assays include anti-CD4 APC (1:100, RPA-T4, 300537), anti-CD8A
BV711 (1:100, RPA-T8, 301044), anti-CD3 APC-Cy7 (1:100, OKT3, 317342), anti-CD14 FITC (1:100, HCD14, 325604), anti-CD4A5RA
BV605 (1:100, HI100, 304134), anti-CCR7 PE-Cy7 (1:100, GO43H7, 353226) and anti-PD-1 BV421 (1:100, EH12.2H7, 329920), all from
Biolegend. Antibodies used for sorting memory B cells for T cell functional assays include anti-CD19 PE (1:100, HIB19, 302208), anti-
CD27 BV421 (1:100, M-T271, 356418), anti-CD3 FITC (1:100, OKT3, 317306) and anti-CD14 APC (1:100, HCD14, 325608) all from
Biolegend. Antibodies used to identify B cell subsets at the conclusion of the T-B cell co-cultures include anti-CD3 FITC (1:100, OKT3,
317306), anti-CD20 BV605 (1:100, 2H7, 302334), anti-CD19 APC-Cy7 (1:100, HIB19, 302218), anti-CD27 PE-Cy7 (1:100, M-T271,
356412), anti-CD38 BV785 (1:100, HIT2, 303530), anti-CD11c PE (1:50, Bul5, 337206), and anti-CD21 PerCP-Cy5.5 (1:100, Bu32,
354908), all from Biolegend. Cytotoxicity assays used anti-CD3 antibodies (OKT3, 50 ug/mL, BioXcell) as well as Annexin V (Biolegend).

All antibodies are commercially available and validated for flow cytometry, microscopy, functional assays, or CITE-seq of human cells
as stated in the manufacturer's product information, quoted below:

Beckman Coulter flow cytometry: Beckman Coulter tests each lot for consistent performance, as verified on the Certificate of
Analysis that accompanies each antibody.

BiolLegend flow cytometry: Each lot of this antibody is quality control tested by immunofluorescent staining with flow cytometric
analysis.

BiolLegend TotalSeq-A: All lots are tested by flow cytometry to make sure they stain the expected cell population and that oligos are
attached to the antibodies. This process has been validated by comparison with a traditional two-step flow cytometry staining as
shown.

Leica immunofluorescence: Leica performs extensive staining experiments using a diversity of human normal and abnormal tissues to
validate their antibodies. The results of these staining QC experiments are described in each Product Detail sheet.

Santa Cruz Biotechnology immunofluorescence: M-20 is a polyclonal goat anti-human CD3 that has been cited in 56 publications
dating back over 20 years.

Thermo Fisher Scientific immunofluorescence: PA5-32305 is a polyclonal rabbit anti-human CD138 antibody. It was purified with
antigen affinity chromatography and validated by the vendor by staining of human tonsil tissue.

GeneTex immunofluorescence: To optimize the performance of our reagents, we employ various analytic validation strategies to
ensure both consistent quality and specificity. These modalities are in line with guidelines described by the International Working
Group on Antibody Validation (IWGAV) and have become fundamental components of our quality assurance process:

- KO/KD Validation

- Comparable Abs

- IP/MS Analysis

- Orthogonal Validation

- Protein Overexpression

Sigma immunofluorescence: Clone 1E6 is a mouse monoclonal antibody against GST-tagged human CLIC5. According to the vendor, it
is specific for the immunogen by Western blot. According to Novus Bio, which sells the same clone, it is also specific for recombinant
CLICS without the GST tag by ELISA and Western. The vendor has also performed validation staining of human placenta.

Abcam immunofluorescence: Antibody specificity is confirmed by looking at cells that either do or do not express the target protein
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within the same tissue. Initially, our scientists will review the available literature to determine the best cell lines and tissues to use for
validation. We then check the protein expression by IHC/ICC to see if it has the expected cellular localization. If the localization of the
signal is as expected, this antibody will pass and is considered suitable for use in IHC/ICC. We use a variety of methods, including
staining multi-normal human tissue microarrays (TMAs), multi-tumor human TMAs, and rat or mouse TMAs during antibody
development. These high-throughput arrays allow us to check many tissues at the same time, providing uniformly as all tissues are
exposed to the exact same conditions.

CST immunofluorescence: All CST™ antibodies that are approved for use in immunofluorescent assays have undergone a rigorous
validation process. Validation steps include:

- Cell lines or tissues with known target expression levels are used to verify specificity.

- Appropriate cell lines and tissues are used to verify subcellular localization.

- Antibody performance is assessed on appropriate tissues.

- Cells are subjected to phosphatase treatment to verify phospho-specificity. Target specificity is also verified with the use of known
knockout or null cell lines.

- Cells are subjected to siRNA treatment or over-expression of the target protein to verify target specificity.

- Activation state specification, target expression, and translocation are examined using ligands or inhibitors to modulate pathway
activity.

- Requirement of threshold signal-to-noise ratio in antibody:isotype comparison and minimum fold-induction for phospho-specific
antibodies ensures the greatest possible sensitivity.

- Fixation and permeabilization conditions are optimized; alternative protocols are recommended if necessary.

Stringent testing ensures lot-to-lot consistency.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

CD32-expressing murine fibroblast L cells were kindly gifted to Deepak Rao by Megan Levings (PMID: 36470208)

The L cells were not recently authenticated.

Mycoplasma contamination L cells were not tested for mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used in this study as L cells are not on the list of commonly misidentified cell lines.

(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Male and female patients with rheumatoid arthritis according to the ACR 2020 Rheumatoid Arthritis classification criteria.
The patients were recruited into three different cohorts: treatment-naive patients (n=28) early in their disease course (mean
2.64 years), methotrexate-inadequate (MTX) responders (n=27), and anti-TNF agent inadequate responders (n=15). The
patients were similar in age, sex, disease activity, and other clinical parameters across the three treatment groups. In
addition, nine patients with osteoarthritis were recruited. Additional population characteristics detailed in Supplementary
Table 1.

Participants were recruited by physician referral from 13 clinical sites across the United States and 2 sites in the United
Kingdom. Only patients with active disease were recruited. Recruitment occurred mainly at academic medical centers, which
may be more likely to see complex cases. Different sites used different techniques for joint biopsies, which may introduce
bias. Recruitment site and biopsy method are addressed as potential confounders in the paper.

The study was performed in accordance with protocols approved by the Institutional Review Board at Stanford University
(Protocol ID: 33561). All clinical and experimental sites obtained approval for this study from their Institutional Review
Boards.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Cryopreserved synovial tissue fragments were disaggregated, and live cells were obtained by cell sorting (CD235a- live-dead
dye-). The first 60,000 cells were used for CITE-seq studies. The next 50,000 sorted live cells were used for flow cytometry.
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Instrument

Software

Cell population abundance

Gating strategy

A BD FACSAria Fusion cell sorter was used for all sorting and analytic flow cytometry except for the outcome analytic flow
cytometry of the T-B cell co-culture assay, which was performed on a BD Fortessa analyzer.

Data were collected using FACSDiva software 8.0.1 and analysed using FlowJo v10.6.

During the initial sort of live cells for CITE-seq, live cells represented a mean of 59.2% and median of 61.6% of cells (S.D.
17.9%). Cell populations of interest in the other flow panels ranged from <1% to >50%, depending on the population and
sample.

Synovial cell populations were gated as follows: A very large FSC vs SSC gate designed to capture small lymphocytes as well as
large fibroblasts and macrophages. After singlet gating, dead cells and red blood cells were gated out using fixable viability
dye and anti-CD235a antibodies pooled into the same channel. Cell populations were identified as follows: CD45+CD3-CD14-
CD19+ (B cells), CD45-CD31-CD146- (fibroblasts), CD45+CD3-CD14+ (myeloid), CD45+CD3+CD14- (T cells). Gating of these
populations is shown in Supplementary Figure 1G.

For functional T cell assays, T cells were sorted from live cells (negative for LIVE/DEAD Fixable Aqua Dead Cell Stain) as
follows: CD14-CD3+CD4+CD8-CD45RA-PD-1hi (TPH+TFH), CD14-CD3+CD4+CD8-CD45RA-PD-1- (PD-1- Memory CD4), CD14-
CD3+CD4-CD8+CD45RA- (Memory CD8), CD14-CD3+CD4-CD8+CD45RA+CCR7- (TEMRA CD8). For these assays, memory B
cells were sorted from live cells (negative for LIVE/DEAD Fixable Aqua Dead Cell Stain) as follows: CD19+CD27+CD3-CD14-. At
the conclusion of the T-B co-culture, B cell subsets were identified as follows: CD27hi CD38hi CD19+ (plasmablasts) and
CD11c+ CD21- CD19+ (ABCs). In the cytotoxicity assay, dead cells were identified as Annexin V+. Representative gating of the
conclusion of the T-B co-culture experiment is shown in Figure 3d.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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