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High-dimensional profiling of single cells is a central tool for 
understanding complex biological systems1. Cells gathered 
from distinct samples are used to characterize cell states 

that associate with a sample attribute, such as a clinical phenotype 
or an experimental perturbation. Current methods for analyzing 
multi-sample single-cell datasets typically impose a global tran-
scriptional structure on the dataset by partitioning cells into groups 
through clustering2,3. The data are then analyzed solely through this 
lens by asking whether a sample attribute is associated with expan-
sion or depletion of any clusters. Such approaches assume that the 
underlying biology is well-captured by the imposed structure and 
often require substantial tuning of parameters, such as clustering 
resolution4.

Here we present CNA, a method for characterizing dominant 
axes of inter-sample variability and conducting association testing in 
single-cell datasets without requiring a pre-specified transcriptional 
structure. The core notion of CNA is the value of granular analysis 
of neighborhoods—very small regions in transcriptional space—
with aggregation of neighborhoods according to their co-variance 
across samples. We posit that groups of neighborhoods that change 
in abundance together across samples are likely to represent biologi-
cally meaningful units that share function, regulatory influences or 
both. CNA can be used to define these co-varying neighborhood 
groups and then identify statistical associations between them and 
any sample-level attribute. One published method, MELD, has 
already demonstrated the potential of neighborhood-scale abun-

dance information in datasets with small sample size5; however, this 
method does not provide a framework for determining statistical 
significance to differentiate true from false discoveries. As we show, 
the large number of neighborhoods in many single-cell datasets 
makes well-powered association testing at this granularity a chal-
lenge. CNA addresses this challenge by leveraging the extensive 
co-variance structure that we show exists across neighborhoods. As 
a result, CNA offers both a data-dependent, parsimonious represen-
tation of single-cell data and well-powered and accurate association 
testing.

By testing simulated sample attributes in real single-cell data, 
we demonstrate that CNA is well-calibrated and, compared to 
cluster-based analysis, detects diverse signals with improved power 
and ability to correctly recover the cell populations driving those 
signals. We then apply CNA to three published datasets6–8, demon-
strating that it both refines and expands upon the associations pre-
viously found using standard approaches.

Results
Overview of methods. CNA relies on a representation of each 
sample in a single-cell dataset by its abundance of cells across 
neighborhoods. To construct this representation, we begin with 
a cell–cell similarity graph that captures all cells from all samples. 
This graph can be created from any representation chosen by the 
user, such as gene expression principal components (PCs) or canon-
ical co-variates for a multimodal dataset, typically processed with 
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a batch correction tool9–12. We then define one neighborhood per 
cell m in the dataset: every other cell m′ belongs to the neighbor-
hood anchored at cell m according to the probability that a random 
walk in the graph from m′ will arrive at m after s steps (Methods 
and Fig. 1a). CNA chooses s in a data-dependent manner to mini-
mize neighborhood size while ensuring that neighborhoods are not 
dominated by cells from only a few samples. Supplementary Fig. 1 
and Supplementary Table 1 show example neighborhoods and aver-
age neighborhood sizes for the real datasets analyzed in this paper.

We aggregate this information into a neighborhood abundance 
matrix (NAM) whose n,m-th entry is the relative abundance of cells 
from sample n in neighborhood m (Fig. 1b,c). We then apply princi-
pal component analysis (PCA) to the NAM to define neighborhood 
groups whose abundances change in concert across samples (Fig. 1d). 
For each NAM principal component (NAM-PC), the neighborhoods 
with positive loadings tend to have high abundance together in the 
samples for which the neighborhoods with negative loadings have 
low abundance. Likewise, the sample loadings for each NAM-PC 
yield information about the extent to which that NAM-PC’s pattern 
of co-varying neighborhoods appears in each sample.

NAM-PCs can be used to characterize transcriptional changes 
that comprise the axes of greatest variation in neighborhood abun-
dances across samples. They can also be used to test for associations 
between these transcriptional changes and a per-sample attribute of 
interest—for example, a clinical attribute, genotype or experimen-
tal condition. To perform this test, we model the attribute value for 
each sample as a linear function of the sample’s loadings on the first 

k NAM-PCs, where k is chosen in a data-dependent manner to opti-
mize model performance without overfitting (Methods). We report 
a P value for this association by permuting attribute values within 
experimental batches to obtain a null distribution.

Finally, we define the specific cell populations driving any 
detected associations. We do so by using the neighborhood load-
ings on the first k NAM-PCs and the estimated per-PC effect sizes 
from our linear model to estimate per-neighborhood correlations 
between neighborhood abundance—as captured by the first k 
NAM-PCs—and the sample attribute (Methods). We report false 
discovery rates (FDRs) for each per-neighborhood association by 
again permuting attribute values within experimental batches to 
obtain null distributions. We refer to the correlation between the 
attribute and the abundance of the neighborhood anchored at each 
cell as the neighborhood coefficient of that cell. We control for 
sample-level confounders, such as demographic variables, techni-
cal parameters and batch effects, by linearly projecting them out of 
the NAM and the attribute before association testing (Methods). We 
have released open-source software implementing the method.

CNA requires no parameter tuning, and it has favorable runtime 
properties: given a nearest neighbor graph, computing the NAM 
and conducting permutation-based association testing takes less 
than 1 min (and 579 MB of memory) for a dataset of more than 
500,000 cells and more than 250 samples.

Performance assessment with simulations. We used real single-cell 
data with simulated per-sample attributes (Supplementary Fig. 2) 
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Fig. 1 | Method schematic. a, Given an example dataset of single cells sampled from four individuals, CNA defines one transcriptional neighborhood per 
cell in the dataset. Each other cell in the dataset belongs to this neighborhood according to the probability that a random walk in the cell–cell similarity 
graph from that cell will arrive at the neighborhood’s anchor cell after a certain number of steps. Five example neighborhoods, a–e, are depicted. b, 
Examining the representation of cells from each sample in these example neighborhoods identifies a pattern of abundance co-variation. Neighborhoods 
B, D and E tend to have a high abundance when neighborhoods A and C have low abundance and vice versa. This co-variation pattern appears in samples 
1–3 but not in sample 4. c, The NAM quantifies the fractional abundance of cells in each neighborhood for each sample; we indicate higher abundance with 
red and lower abundance with blue. d, Dominant patterns of abundance co-variation across neighborhoods can be illuminated by factorizing the NAM, for 
example with PCA. The PC corresponding to this example has per-neighborhood loadings that capture the neighborhood co-variance pattern as well as 
per-sample loadings that reflect the degree to which the co-variance pattern appears in each sample.
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to assess CNA’s calibration (type I error) and to compare CNA’s 
statistical power (type II error) against cluster-based analysis. 
This published dataset of 259 patients previously infected with 
Mycobacterium tuberculosis contains 500,089 memory T cells in a 
canonical correlation analysis (CCA)-based per-cell joint represen-
tation of whole-transcriptome mRNA and abundances of 31 sur-
face proteins6. In addition to assessing calibration and power, we 
also assessed CNA’s ability to recover the precise cell populations 
underlying an association by computing the correlation between the 
per-cell ground truth values used to create the simulated attribute 
and effect sizes estimated by the method; we refer to this quantity as 
‘signal recovery’ (Methods and Supplementary Fig. 3).

To assess type I error, we simulated sample attributes without true 
associations to the data and found that CNA was well-calibrated. We 
first permuted patient age across all samples and observed a P < 0.05 
global association in 41/1000 trials (type I error rate at α = 0.05 of 
0.041 ± 0.013; Supplementary Fig. 4). We next permuted patient 
ages within experimental batches and observed P < 0.05 for 44/1000 
trials (type I error 0.044 ± 0.013; Supplementary Fig. 4). Finally, 
to simulate extreme batch effects, we selected batches at random 
and, for each randomly selected batch, assigned case status to the 
samples in the selected batch and control status to all other samples. 
We observed P < 0.05 for 60/1000 trials (type I error 0.060 ± 0.015; 
Supplementary Fig. 4).

To assess CNA’s power and signal recovery, we simulated sample 
attributes with true associations to different types of cell popula-
tions and compared CNA’s performance to that of a cluster-based 
association test using mixed-effects modeling of associations of sin-
gle cells (MASC)13; MASC offers greater power than a t-test or lin-
ear model by accounting for per-cell information14. For CNA, power 
was defined as the proportion of simulations with global P < 0.05. 
For MASC, power was defined as the proportion of simulations 
for which at least one cluster achieved P < 0.05/(total clusters). 
Cluster-based analysis is sensitive to the choice of parameters, such 
as the resolution parameter, and users typically explore a range of 
resolutions before selecting one4. To reflect this, we ran MASC using 
four different clustering resolutions. We aggregated power results 
across these resolutions by taking the minimum P value and cor-
recting for the four resolutions tested. We aggregated signal recov-
ery results by taking the average signal recovery across the tested 
resolutions (Methods).

We simulated three signal types, each at a variety of noise levels: 
(1) cluster abundance, where the attribute is a sample’s abundance 
of cells from a given cluster (matching the cluster-based analysis 
model; Fig. 2a); (2) global gene expression program (GEP), where 
the attribute is a sample’s average use of a GEP across all cells (Fig. 
2b); and (3) cluster-specific GEP, where the attribute is a sample’s 
average use of a GEP across cells in one cluster (Fig. 2c). We used 
PCs computed from the matrix of cells by canonical variables for 
the whole dataset or for cells within a cluster as our global and 
cluster-specific GEPs, respectively.

CNA had superior power over cluster-based analysis to detect 
global GEP and cluster-specific GEP signals while retaining similar 
power for cluster abundance signals (Fig. 2a–c). These conclusions 
also hold with respect to the best-performing individual clustering 
resolution: for the global GEP and cluster-specific GEP signals, CNA 
had better power than cluster-based analysis at the best-performing 
resolution, and, for cluster abundance signals, CNA had similar 
power to cluster-based analysis run on the best-performing clus-
tering resolutions, including the ground truth resolution used to 
define the clusters (Supplementary Fig. 5).

CNA also had superior signal recovery relative to cluster-based 
analysis for all three signal types (Fig. 2a–c). Moreover, for global 
GEP signals, CNA’s signal recovery was superior to signal recovery 
for cluster-based analysis even at the best-performing clustering 
resolution (Supplementary Fig. 5). For cluster abundance signals, 

the only resolution parameter choice that obtained superior signal 
recovery to CNA was the one used to create the simulated cluster 
signals. For cluster-specific GEPs, the only resolution outperform-
ing CNA was the finest resolution tested, which included 72 clusters; 
all other resolutions were less accurate, and two had signal recov-
ery near zero (Supplementary Fig. 5). In downsampled versions of 
the Tuberculosis Research Unit (TBRU) data at lower sample sizes 
(18 batches/n = 107, 12 batches/n = 71 and 8 batches/n = 48), CNA 
generally continued to outperform the cluster-based compara-
tor, although the latter gained an advantage for the causal cluster 
signal type at lower sample sizes (Supplementary Fig. 6). In a sec-
ond smaller dataset of patients with and without sepsis (n = 65), as 
well as in downsampled versions of this smaller dataset (n = 40 and 
n = 20), CNA outperformed the cluster-based comparator method 
across all three signal types (Supplementary Fig. 7).

CNA captures Notch activation gradient implicated in rheuma-
toid arthritis. To assess whether CNA can detect important bio-
logical structure in real data, we applied CNA to 27,216 fibroblast 
single-cell RNA sequencing (scRNA-seq) profiles from synovial 
joint tissue of six patients with rheumatoid arthritis (RA) and six 
patients with osteoarthritis (OA)8. The original study, also by our 
group, used trajectory analysis to uncover a fibroblast trajectory 
corresponding to endothelial Notch signaling and found expansion 
of Notch-activated fibroblasts in RA. This previous study also iden-
tified two fibroblast clusters—representing the lining versus sub-
lining synovium regions—and demonstrated sublining fibroblast 
expansion in RA.

CNA identifies NAM-PC1 as the dominant signal in this 
dataset: NAM-PC 1 explains 39% of the variance in the NAM, 
whereas no other NAM-PC explains more than 12%. NAM-PC1 
reflects Notch activation: cells’ expression of PRG4—an estab-
lished Notch-response gene in the synovial joint tissue15—was most 
strongly correlated with their anchored neighborhoods’ NAM-PC1 
loadings (Pearson r = 0.79, P < 1 × 10−10), followed by expres-
sion of FN1 (Pearson r = 0.71, P < 1 × 10−10), a signaling molecule 
shown to regulate Notch16. Furthermore, two Notch gene sets were 
significantly enriched among all gene correlations to NAM-PC1 
(‘Vilimas NOTCH1 targets up’ and ‘Reactome signalling by 
NOTCH’, FDR = 0.0073 and FDR = 0.019, respectively). Moreover, 
NAM-PC1 has a stronger correlation than the published trajec-
tory to the experimentally defined Notch activation score from the 
original study (Spearman r = 0.56 versus r = 0.43, P < 0.01 by boot-
strapped permutation test; Fig. 3a–c). CNA’s focus on inter-sample 
abundance co-variance information was useful for uncovering this 
structure: PC1 from naive transcriptional PCA of the cells-by-genes 
expression matrix has a low correlation (Spearman r = 0.22) with 
Notch activation (Fig. 3d). Notably, NAM-PC1 detected the Notch 
activation signal without the parameter tuning required by trajec-
tory analysis.

NAM-PC1 largely separates the sublining and lining clusters 
(t-test, P < 1 × 10−10) because sublining cells generally have higher 
Notch activation8, but CNA shows that Notch activation variation 
exists within these clusters. Neighborhood loadings on NAM-PC1 
are correlated to the Notch activation scores of their anchor cells 
even within each cluster (Pearson r = 0.36 lining cluster with 
P < 0.001 and Pearson r = 0.33 sublining cluster with P < 0.001; Fig. 
3e,f). NAM-PC2 appears to reflect an axis of fibroblast activation in 
response to interferon17 (Supplementary Table 2). Low sample size 
precludes detailed interpretation of additional NAM-PCs in this 
dataset.

CNA identified RA-associated cell populations (global P = 0.02) 
that recapitulate the coarse cluster-based associations but more pre-
cisely reflect the driving Notch mechanism. Nearly all cells to which 
CNA assigned significantly positive neighborhood coefficients 
(99.9% of 5,181 total cells at FDR < 0.05) belong to the sublining 
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cluster, and nearly all cells assigned significantly negative neigh-
borhood coefficients belong to the lining cluster (96.8% of 7,169 
total cells at FDR < 0.05). However, CNA assigned some sublining 
cluster cells to the depleted population, and these cells have lower 
Notch activation gene expression than other sublining cluster cells. 
Likewise, CNA assigned some lining cluster cells with higher Notch 

activation to the expanded population (Fig. 3e,f). Therefore, CNA 
adds informative granularity beyond the cluster-based associations.

CNA refines sepsis-associated blood cell populations. To assess 
CNA’s ability to identify granular case–control associations in a 
dataset with many cell types, we next applied CNA to scRNA-seq 
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profiles of 102,814 peripheral blood mononuclear cells (PBMCs) 
from 29 patients with sepsis and 36 patients without sepsis. The 
published analysis7 compared patients with and without sepsis in 
several sub-cohorts—for example, intensive care unit (ICU) patients 
and emergency department (ED) patients. Using a clustering of the 
data (Fig. 4a), this analysis identified expansion of a monocyte state 
‘MS1’ in sepsis in multiple sub-cohorts (Supplementary Table 3). 
Our re-analysis compares patients with and without sepsis across 
the full cohort using CNA and a MASC cluster-based analysis.

CNA found significant changes in sepsis compared to control 
samples (global P = 7 × 10−5) and identified a population expanded 
in sepsis (19,991 monocytes at FDR < 0.05; Fig. 4b). This popula-
tion overlapped with MS1 but contained cells from other clusters: 
56% of cells in CNA’s expanded population were in MS1, whereas 
44% were in clusters MS2, MS3 and MS4. CNA’s expanded popula-
tion contained 75% of all MS1 cells. In contrast, our cluster-based 
analysis of the same sepsis phenotype found that no cluster was sig-
nificantly associated, although MS1 did have the smallest P value 
(P = 0.26; Fig. 4c). Therefore, our results support the original find-
ing but demonstrate that the published clusters partition transcrip-
tional space in a manner that reduces power to detect the sepsis 
association in the full cohort.

CNA’s cluster-free delineation of sepsis-associated cell states 
implicates known sepsis-relevant pathways. Gene expression cor-
relations to per-cell neighborhood coefficients were most highly 
enriched for the RAC1 activation gene set (FDR = 2.5 × 10−4, r = 0.63 
between summed gene set expression and neighborhood coeffi-
cients), a known sepsis-associated pathway18 whose suppression has 
therapeutic benefit in septic encephalopathy19 (Fig. 4d). The other 

most significantly enriched gene sets also have established sepsis 
associations (Supplementary Table 4).

Strikingly, CNA identified considerable within-cluster hetero-
geneity in this dataset: eight of the 15 published clusters included 
clear subpopulations with distinct degrees—and even directions—
of associations to sepsis (Fig. 4e–h and Supplementary Fig. 8). For 
example, MS4 contains both a significantly expanded and a signifi-
cantly depleted subpopulation (FDR < 0.05; Fig. 4f). Both of these 
associations were obscured by aggregating these subpopulations 
together. In the published analysis, clustering resolution was tai-
lored to each cell type (for example, Leiden 0.6 for T cells and 0.4 for 
monocytes). In contrast, CNA does not require parameter tuning to 
detect associated populations.

To explore local contrasts in gene expression between cluster 
subpopulations implicated in sepsis by CNA and closely related but 
non-sepsis-associated cells, we conducted differential expression 
contrasting these subpopulations both to their respective clusters 
and to their respective major cell types. We found that many of the 
GEPs detected through global analysis (for example, RAC1) also 
distinguish each cluster’s depleted subpopulation from similar but 
non-depleted cells. However, as shown in Supplementary Fig. 9, this 
analysis also revealed GEPs that uniquely typify sepsis-associated 
populations from specific clusters (Methods, Supplementary Table 
5 and Supplementary Table 6). For example, the depleted subpopu-
lations of BS1 and MS4 are negatively enriched in class II histone 
deacetylase complex (HDAC) activity, consistent with literature 
showing that HDAC activity increases in sepsis and also that inhibi-
tion of a class II HDAC therapeutically increases B cell and mono-
cyte populations in patients with sepsis20. Furthermore, interleukin 
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(IL)-12 signaling gene sets were negatively enriched in the depleted 
subpopulations of DS1, DS2, MS4 and TS2, matching a known ele-
vation of serum IL-12 in patients with sepsis21,22. Finally, telomerase 
pathway genes are negatively enriched in the depleted subpopula-
tion of BS1; telomere lengths are known to be shortened in patients 
with sepsis23.

For comparison, we also ran MELD on this dataset. MELD 
per-cell abundance relationship scores to sepsis were correlated 
with CNA’s neighborhood coefficient values (r = 0.6; Supplementary 
Fig. 10). In contrast to CNA, however, MELD does not assess sig-
nificance for these scores and produced patterns of scores on 
randomly permuted case–control labels that also appear to have 
non-trivial structure (Supplementary Fig. 10). When we applied a 
permutation-based approach identical to the one used by CNA to 
assess significance at the neighborhood level, none of the individual 
per-cell MELD scores was significant at FDR < 0.05 (Supplementary 
Fig. 10). This highlights the power advantage of CNA’s use of 
inter-sample co-variance information.

To understand the dominant axes of inter-sample variation in 
this dataset, we examined gene expression and cell type abundance 
correlates of each of the first five NAM-PCs. We found that some 
NAM-PCs do indeed capture information related to broad cell type 
populations (Supplementary Fig. 11, Supplementary Table 7 and 
Supplementary Table 8). For example, NAM-PC 1 has statistically 
significant positive correlation with natural killer (NK) cell abun-
dance (Pearson r = 0.55, P = 1.7 × 10−6), whereas NAM-PC2 has 
statistically significant positive correlation with B cell abundance 
(Pearson r = 0.53, P = 5.1 × 10−6) and T cell abundance (Pearson 
r = 0.84, P = 4.0 × 10−18) and negative correlation with macrophage 
abundance (Pearson r = −0.89, P = 1.1 × 10−22). In contrast, other 
NAM-PCs, such as NAM-PC3, do not exhibit statistically signifi-
cant correlation with broad cell type abundance, suggesting that 
they capture finer-scale structure. At the level of pathways, we 
found several immune activation and inflammation-related gene 
sets enriched in these NAM-PCs that largely recapitulated the gene 
sets that we identified as relating to sepsis (Supplementary Fig. 11 
and Supplementary Table 9). These included some gene sets, such as 
RAC1 signaling, that were enriched in multiple NAM-PCs, and oth-
ers, such as IL12 signaling mediated by STAT4, that were enriched 
only in one NAM-PC.

CNA captures diverse associations in a large tuberculosis data-
set. We next applied CNA to a larger and more richly phenotyped 
dataset: 500,089 memory T cells from 259 patients in a tuberculosis 
(TB) progression cohort6. (This dataset, recently published by our 
group, was also used above for simulations.) The published analysis 
employed 31 clusters to compare patients previously infected with M. 
tuberculosis who rapidly developed symptoms (‘progressors’, n = 128) 
to those who sustained latent infections (‘non-progressors’, n = 131).

The NAM-PCs in this dataset appear to carry biologic mean-
ing. For example, neighborhood loadings on NAM-PC1 correlate 
strongly across cells with a previously defined transcriptional sig-
nature of ‘innateness’—the degree of effector function in each cell 
(r = 0.81; Fig. 5a)24,25; individual gene correlations to NAM-PC1 also 
reflect this (Supplementary Table 10). This result shows that indi-
viduals vary to a substantial degree in their average T cell ‘innate-
ness’. Moreover, NAM-PC1 sample loadings were nearly identical 
when computed using protein profiling, mRNA profiling or the 
joint CCA representation of these data (Fig. 5b); by contrast, PC1 
sample loadings from naive PCA of each data type were far less cor-
related (Fig. 5b). Across the three modalities, 50% of total variance 
in each NAM was explained by the top 5–10 PCs (out of 271; Fig. 
5c), suggesting that NAM-PCs offer a parsimonious representation 
of this dataset.

To assess whether NAM-PCs can detect nuanced transcrip-
tional shifts that span a broad range of cell types, we re-computed 

NAM-PCs for this dataset without the upstream batch correction 
from the published analysis, which has the potential to eliminate 
subtle biologic variation26,27. Indeed, in the mRNA data, we found 
that NAM-PC2 and NAM-PC4 correlate strongly with sex (joint 
R2 = 0.76; Fig. 5d). Neighborhood loadings on NAM-PC4 indeed 
capture sex chromosome gene expression (Supplementary Table 
11)—which differentiates otherwise very similar cells from individ-
uals with different sex chromosomes across all cell types—whereas 
NAM-PC2 captures cell states known to vary in abundance with 
sex28 (Fig. 5e, Supplementary Fig. 12 and Supplementary Tables 12 
and 13). Although sex information is also encoded in naive gene 
expression PCs, it is captured primarily in later PCs: the total pre-
dictive power of the first four naive gene expression PCs for sex was 
R2 = 0.05 as compared with R2 = 0.76 for the first four NAM-PCs. 
When we instead expanded to the first 20 naive gene expression 
PCs, we found that the PC most strongly correlated with sex was 
PC-18 (R = 0.84; Supplementary Table 14). Thus, NAM-PCs better 
prioritize—that is, capture in earlier PCs—expression variation that 
is relevant to inter-sample differences (for example, sex) rather than 
intra-sample differences (for example, cell cycle) that might not dif-
fer strongly across samples.

We next analyzed the primary phenotype, TB progression, using 
identical data processing and co-variate control to the published 
analysis (Methods), which defined 31 clusters (Fig. 6a) and found 
two clusters with Th17-like and innate-like character (‘C-12’ and 
‘C-20’, respectively) to be depleted among progressors. CNA found 
a significant global association (CNA global P = 0.0015) driven by 
a depleted population (FDR < 0.05) as well as an expanded popu-
lation (FDR < 0.05). CNA’s depleted population overlapped with 
the previously published C-12 (86% of cluster) and C-20 (64% of 
cluster) but also contained many cells from additional, phenotypi-
cally similar clusters (74% of depleted population; Fig. 6b). Overall, 
this population had similar characteristic proteins and genes to the 
cluster-based depleted population (Fig. 6c and Supplementary Table 
15) but contained substantially more cells.

In contrast to the cluster-based analysis, CNA identified a 
population of cytotoxic cells expanded among progressors (Fig. 
6b,c and Supplementary Table 15), consistent with previous work 
describing the interplay between cytotoxic cells and mycobacte-
ria29. These cells were predominantly captured by two clusters: 72% 
were from cluster C-23 (‘CD4+ cytotoxic’), and 27% were from C-22 
(‘CD4+CD161+ cytotoxic’). Tested individually, these clusters show 
weak evidence of association with progressor status (P = 0.013 and 
P = 0.022, respectively) and do not pass multiple testing correction 
for the 31 clusters total. With a single test, CNA detected an asso-
ciated population of functionally similar cells that had been split 
across multiple clusters.

As reported in the original publication, the association to pro-
gressor status was significant only after unbiased mRNA profiling 
was combined with targeted surface protein quantification in a 
multimodal representation. Given our observed correlations among 
NAM-PCs across data modalities, we speculated that CNA might 
identify this association in unbiased mRNA data alone, and indeed 
it does (global P = 4.5 × 10−3).

Finally, we conducted a survey for associations between the 
single-cell data (multimodal representation) and 17 sample-level 
attributes besides progressor status (Methods). With control for 
confounders and multiple testing (Methods and Supplementary 
Table 16), we found global associations for age (P < 1 × 10−6; Fig. 
6d,e), season of blood draw (P < 1 × 10−6; Fig. 6f), genetic ances-
try (P = 1.8 × 10−4; Fig. 6g) and sex (P = 3 × 10−6) (Supplementary 
Fig. 13 and Supplementary Table 17). These results align with the 
published cluster-based analysis, which also found evidence of 
these associations, and demonstrate that CNA can detect associa-
tions to a variety of signals, including demographic, environmen-
tal and genetic factors. On average, CNA chose 19 (out of 271; 
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7%) NAM-PCs to explain 26% of variance in these attributes, a 
3.7× enrichment, suggesting that NAM-PCs are a parsimonious, 
phenotype-relevant representation of this complex dataset. The cell 
populations associated by CNA are juxtaposed with those found 
by a conventional cluster-based approach with identical co-variate 
control in Supplementary Fig. 13.

Some of the distinguishing cell states that CNA finds associated 
with these attributes are established in the literature, whereas oth-
ers are less well elucidated. We found that older age is associated 
with higher CD8+/CD4+ ratio, decreased co-stimulatory molecule 
expression and greater effector memory character relative to cen-
tral memory character30 (Fig. 6e and Supplementary Table 18). CNA 
highlights a shift toward more Th2 character relative to Th1 charac-
ter during the winter season in contrast to studies of seasonality in 
other locations31 and identifies an expanded CD8+ central memory 
population and depleted CD4+ cytotoxic population with increas-
ing European genetic ancestry (Supplementary Tables 19 and 20). 
Cluster-based analyses with identical co-variate control produced 
generally similar results but implicated fewer cells in each associa-
tion than CNA (Supplementary Fig. 13and Supplementary Table 17).

Discussion
Here we introduced CNA, a method to characterize dominant axes 
of abundance variation across samples in a single-cell dataset and 
to identify, with greater flexibility and granularity, cell populations 
whose abundance correlates with sample attributes of interest. 
CNA offers improved power and signal recovery over traditional 
cluster-based analysis while remaining robust to experimental 
artifacts and providing control for sample-level confounders, and 
it does so without requiring parameter tuning or long computa-
tion times. CNA can be used to study diverse sample attributes, 
enabling improved understanding of disease pathology, risk and 
treatment.

In addition to their utility for testing for associations to 
sample-level attributes, NAM-PCs themselves appear to carry bio-
logical meaning: for example, our analyses revealed NAM-PCs that 
correspond to Notch signaling, memory T cell innateness and a sex 
chromosome gene signature. For NAM-PCs without clear biologi-
cal interpretation, characterizing the cellular functions and/or regu-
latory influences that unify these co-varying neighborhood groups 
could yield insight into basic biology. Co-varying neighborhood 
groups might, for example, delineate cell states most relevant to 
context-dependent cellular processes, such as gene regulation and 
cellular metabolism.

CNA offers a versatile framework that can be easily extended 
to other data modalities. We highlight datasets of scRNA-seq and 
multimodal mRNA and protein profiling, but CNA can be extended 
to any modality for which cell–cell graphs can be built, such as 
single-cell ATAC-seq epigenome profiling or mass cytometry pro-
tein profiling. For some of these applications, NAM factorization 
with approaches besides PCA, such as non-negative matrix factor-
ization or independent components analysis, might be useful. For 
example, decomposition methods that do not enforce orthogonality 
among components could result in components with clearer corre-
spondence to individual cellular programs. Such exploration, how-
ever, is beyond the scope of this work.

CNA has several limitations. First, because its emphasis is explic-
itly on inter-sample variation, CNA’s power and signal recovery 
do degrade with sample size, as demonstrated in our simulations. 
Second, due to its signal type-agnostic methodology, CNA might 
also be less powerful than more constrained models at lower sample 
sizes specifically when the underlying biology matches those mod-
els. Third, although existing approaches for biological annotation 
of clusters and trajectories can be applied to CNA populations and 
NAM-PCs, respectively, such approaches typically seek a single 
explanatory signal; an associated population or NAM-PC might 
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capture multiple related processes, and a given biological process 
might be captured by multiple NAM-PCs. Fourth, although cell 
assignments into clusters are discrete, CNA’s neighborhoods have 
probabilistic distributions in transcriptional space. As a result, it is 
not always obvious where the boundary of a CNA-associated popu-
lation lies or whether such a boundary exists.

Despite these limitations, CNA is a sensitive way to identify disease 
states and drivers of variation across samples in single-cell datasets that 
is unique in taking advantage of inter-sample variation. As single-cell 
datasets grow in sample volume, methods that use and characterize 
inter-sample information at fine-scale transcriptional resolution will 
become crucial to realize the promise of single-cell technologies.
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Methods
Co-varying neighborhood analysis. Intuition. Co-varying neighborhood 
analysis is built on the idea of a transcriptional neighborhood, a very small 
subset of transcriptional space, typically much smaller than would arise from 
traditional clustering. Our method is based on two intuitions about transcriptional 
neighborhoods. First, because of the neighborhoods’ granularity, any meaningful 
variation across samples will result in differential abundance of one or more 
neighborhoods across samples. Second, neighborhoods co-vary in abundance 
across samples because of shared function and/or regulatory influences. The 
first intuition leads us to represent multi-sample single-cell data using the NAM, 
a samples-by-neighborhoods matrix that describes the relative abundance of 
each neighborhood in each sample. The second intuition leads us to analyze the 
NAM using PCA. The resulting PCs reveal sets of neighborhoods that co-vary in 
abundance across samples as well as samples with similar abundance profiles across 
neighborhoods. We use this information to find structure and conduct association 
testing with sample-level attributes, such as clinical information, genotypic 
information or experimental conditions. The remainder of our technical material 
establishes notation and assumptions and then provides detailed descriptions of (1) 
definition of transcriptional neighborhoods, (2) construction and quality control 
of the NAM, (3) PCA of the NAM controlling for batch and co-variates and (4) 
association testing.

Notation and assumptions. Let X be an M × G matrix representing a single-cell 
dataset with M cells and G cell-level features, such as genes. Let N be the number of 
distinct samples to which the cells belong, and, for every cell m and every sample 
n, let C(n) be the set of cells belonging to the n-th sample. We assume that X has 
already undergone quality control and (if desired) batch correction and that a 
nearest neighbor graph construction algorithm—such as the uniform manifold 
approximation and projection (UMAP) nearest neighbor algorithm—has been 
run on X to produce a sparse, weighted M × M adjacency matrix A whose m,m′-th 
entry indicates the similarity between cells m and m′ in the graph.

Definition of transcriptional neighborhoods. For each cell in our dataset, we define 
a transcriptional neighborhood anchored at that cell using the sense of locality 
provided by the nearest neighbor graph. That is, two cells are considered close to 
each other if it is ‘easy’ to reach one from the other in the graph. A natural way to 
define neighborhoods through this lens is to stipulate that two cells are in the same 
neighborhood to the extent that a random walk on the graph would be likely to 
reach one from the other.

More formally, we define a random walk whose transition probabilities 
are proportional to the entries of I + A, where I is the M × M identity matrix. 
(The addition of the identity adds self-loops to the UMAP graph.) That is, the 
probability that the walk moves from cell m′ to cell m in one step is given by

Ãm′,m :=
(I + A)m′,m

1 + Σm′′Am′,m′′

.

For some number of steps s, we then define the extent to which the m′-th cell 
belongs in the neighborhood of the m-th cell as the probability that a random walk 
starting at the m′-th cell will end up at the m-th cell after s steps. This is given by

Psm′→m :=

(
em′

)T Ãsem

where Ã is the matrix whose entries are given by Ãm′,m, and em is a length-M vector 
whose m-th entry equals 1 and whose other entries are all 0, and em′ is similarly 
defined. As we discuss in detail below, the number of steps s is chosen to minimize 
neighborhood size while ensuring that neighborhoods are not dominated by a 
small number of samples.

Construction and quality control of the NAM. With neighborhoods defined, we 
transform our dataset into a matrix of samples by neighborhoods whose n,m-th 
entry is the relative abundance of neighborhood m in sample n—that is, the NAM. 
To formally define the NAM, we first let

Rn,m :=
∑

m′ ∈ C(n) P
s
m′→m be the total number of expected cells from the n-th 

sample that would arrive in the m-th neighborhood from our random walk. The 
NAM is given by normalizing the rows of R to sum to 1—that is,

Qn,m =
Rn,m

ΣmRn,m
.

These entries can be computed very quickly using iterative sparse matrix 
multiplication, taking under 1 min for a dataset with 500,000 cells and over 250 
samples.

Choosing the length of the random walk. When selecting the number of steps 
s in the random walk that defines the NAM, our guiding principle is that s 
should be chosen in a data-dependent manner to minimize neighborhood size, 
thereby retaining informative granularity, while ensuring neighborhoods are not 
dominated by cells from a few samples. We quantify this by measuring, for each 

neighborhood, the kurtosis of its respective column of the NAM: a large kurtosis 
indicates that a small number of samples dominates the relevant neighborhood. 
With increasing time steps, as neighborhoods expand to incorporate more cells, 
kurtosis decreases. To achieve an appropriate balance, we allow our random walk 
to continue until either the median kurtosis across neighborhoods is less than 8 
(the kurtosis of a uniform distribution over only 10% of samples) or the median 
kurtosis across neighborhoods decreases by less than 3 (the kurtosis of the normal 
distribution) over consecutive time steps.

Removing neighborhoods with strong batch effects. If batch information 
is available, we remove neighborhoods dominated by one or a few 
batches by averaging the rows of the NAM within each batch to produce a 
batches-by-neighborhoods matrix and then computing for each neighborhood the 
kurtosis of its respective column of this new matrix. We discard all neighborhoods 
with kurtosis greater than twice the median value across all neighborhoods. 
Because this removal of individual neighborhoods might not eliminate subtle batch 
effects spread across many neighborhoods, we also control for batch as a co-variate 
in our linear model-based framework, as described below.

Conditioning on sample-level co-variates (including batch information if 
available). If there are sample-level co-variates whose influence on X we do not 
want to be represented among the PCs of the NAM, we linearly project them out 
of each column of the NAM—that is, we regress each column of the NAM on the 
sample-level co-variates that are supplied and replace it with the residuals arising 
from that regression. If there is batch information available, this can also be done 
with a one-hot encoding of batch IDs to further remove subtle batch effects. In 
this case, we use ridge regression with an automatically chosen ridge parameter to 
account for the typically large number of batches relative to samples.

PCA of the NAM while conditioning on batch and co-variates. Once the NAM is 
constructed, PCA yields the decomposition

Q̄ = UDVT

where Q is the NAM with columns standardized to have mean 0 and variance 1; 
U is a matrix whose i-th column contains the i-th left singular vector, which has 
one entry per sample; D is the diagonal matrix of singular values; and V is a matrix 
whose i-th column contains the i-th right singular vector, which has one entry per 
neighborhood. Each of the right singular vectors identifies neighborhoods that 
co-vary in abundance across samples. Each of the left singular vectors identifies 
samples that have similar abundance profiles across neighborhoods.

Association testing. CNA quantifies association of the NAM to a given sample-level 
attribute in two ways: (1) a global quantification of the fraction of variance in the 
attribute explained by the single-cell data, with an associated P value, and (2) a 
local estimate of the correlation between the attribute and each neighborhood’s 
abundance across samples, with associated FDRs.

Global association test. Let y be a length-N vector containing a sample-level 
attribute of interest, such as clinical information, genotypic information or 
experimental condition, and suppose we want to associate y with the inter-sample 
variation in X. Because the left singular vectors of the NAM—that is, the columns 
of U—each contain one number per sample, we can do this in a simple linear 
model in which each sample is an observation. That is, for some number k of PCs, 
we can fit the model

y = Ukβk
+ ϵ

where Uk denotes the first k columns of U; βk is a length-k vector with one 
coefficient per PC; and ϵ represents mean-zero noise.

To choose k in a flexible and automatic way, we fit the above model for four 
different values of k ranging from [N/50] through min([N/50], N/5), where […] 
denotes the ceiling function. For each value of k, we compute a multivariate F-test 
P value for the null hypothesis H0:βk=0, and we choose the value k* that yields the 
minimal P value. Thus, larger values of k are selected only if they provide increased 
predictive power for y beyond what we would expect simply from their providing 
more degrees of freedom to the model.

If co-variates were residualized out of the NAM, these are residualized out of y 
before fitting the model. Similarly, if batch information was residualized out of the 
NAM, it is likewise residualized out of y before fitting the model using the same 
ridge parameter.

To obtain a P value for global association, we perform the above procedure, 
including selection of k, on a large number of empirical null instantiations 
(1,000 by default) obtained by permuting the values of y within each batch of the 
dataset. We then use the resulting set of P values, of which there is one per null 
instantiation, as our null distribution.

Local association test. A natural notion of neighborhood-level effect size would be 
the correlation between the m-th column of the NAM and y. However, the NAM 
is very high-dimensional, and so these correlations are noisy. Instead, we therefore 
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compute a ‘smoothed correlation’ between neighborhood m and y—that is, the 
correlation between the m-th column of the rank-k* representation of the NAM 
and y. Mathematically, this equals

γ := Vk∗Dk∗ βk∗

where Dk denotes the upper-left k × k submatrix of D, Vk denotes the first k 
columns of V and βk∗ is the estimate from the model for global association. We 
refer to the entries of γ as the neighborhood coefficients for the sample attribute 
y. To assess statistical significance, we again compute null versions of γ and use 
these to estimate an empirical FDR for a variety of magnitudes of correlation by 
comparing the number of entries of γ with magnitude above a given threshold to 
the average number of entries in the null versions of γ with magnitude above that 
threshold.

Assessing performance with simulations. To assess the calibration and power 
of our method, we conducted simulations using two real single-cell datasets. 
Our primary simulations were conducted with data from the TBRU cohort6. 
This dataset consists of M = 500,089 memory T cells from N = 271 samples 
profiled with CITE-seq32, which simultaneously provides both scRNA-seq 
and single-cell quantification of 31 surface proteins. We also conducted 
supplementary simulations on data from M = 102,814 CD45+ PBMCs from N 
= 65 samples profiled with scRNA-seq. (Additional aspects of these datasets 
are described elsewhere in the Methods.) All simulations in the TBRU dataset 
used a 20-dimensional CCA-based representation of each cell generated in the 
original study reflecting information shared by the RNA-seq and surface protein 
modalities. This representation was subsequently run through Harmony9 to 
remove sample-specific and batch effects. We first describe our simulations for 
quantifying type 1 error, generation of simulated non-null attributes and analysis 
of those non-null attributes in our primary simulations using the TBRU dataset at 
full sample size (N = 271). We then describe how we adapted these procedures for 
our supplementary simulations using the smaller sepsis dataset (N = 65) as well as 
downsampled versions of the two datasets (18 batches/N = 107, 12 batches/N = 71 
and 8 batches/N = 48 for TBRU; N = 40 and N = 20 for sepsis).

Quantifying type 1 error. For the simulation in Supplementary Fig. 4a, we simulated 
1,000 independent null attributes by permuting an existing sample attribute in 
the TBRU dataset (age at sample collection) across all samples in the dataset. For 
the simulation in Supplementary Fig. 4b, we simulated 1,000 independent null 
attributes by permuting this same sample attribute in the TBRU dataset (age at 
sample collection) within each batch. This was done to preserve whatever batch 
effects might be present in the data in our null attributes. For the simulation in 
Supplementary Fig. 4c, we created 1,000 independent null attributes with maximal 
batch effect by selecting 1,000 batches {b1,…, b1000} randomly with replacement and 
setting the i-th attribute to equal 1 for all the samples in batch bi and 0 otherwise.

In all of the above simulations, we used CNA to obtain a P value for association 
to the single-cell data for each attribute, accounting for possible batch effects. This 
yielded 1,000 P values in each case.

Generation of simulated non-null attributes. For Fig. 2, we simulated three signal 
types in the full sample size TBRU dataset: cluster abundance (Fig. 2a), global 
GEP (Fig. 2b) and cluster-specific GEP (Fig. 2c). In each case, we added Gaussian 
noise to each simulated attribute to achieve signal-to-noise ratios of {0.01, 0.1, 
0.2,…,0.9,1}.

For the cluster abundance signal type (Fig. 2a), we clustered the data using the 
Leiden algorithm4 with the same resolution (2.0) used by the authors of the original 
TBRU study6. We then removed any clusters lacking at least ten samples with at 
least 50 cells each, and we removed any clusters whose abundance had correlation 
greater than 0.25 to membership in any batch. This reduced the number of clusters 
from 26 to 24. For each remaining cluster, we computed the abundance of that 
cluster per sample. For each of our 11 signal-to-noise ratios, we then simulated ten 
independent attributes by summing this attribute with the appropriate amount of 
Gaussian noise. This resulted in 24 × 10 = 240 attributes per noise level.

For the global GEP signal type (Fig. 2b), we treated the 20 per-cell harmonized 
canonical variables as each representing the activity of a GEP across cells. For each 
canonical variable, we computed the average value of that variable across all cells 
in each sample. For each of our 11 signal-to-noise ratios, we then simulated ten 
independent attributes by summing this attribute with the appropriate amount of 
Gaussian noise. This resulted in 20 × 10 = 200 attributes per noise level.

For the cluster-specific GEP signal type (Fig. 2c), we first clustered the cells 
using the Leiden algorithm with a resolution of 1.0 and filtered the clusters using 
the same criteria as in the cluster abundance simulation. (We used a coarser 
clustering resolution here because this signal type is driven by intra-cluster 
variability rather than inter-cluster variability, so we wanted to use larger clusters.) 
For each of the ten largest clusters, we then computed the top three PCs of all the 
harmonized canonical variables among only the cells in that cluster, which we 
treated as each representing activity of a cluster-specific GEP. For each of these 
PCs, we computed the average value of that component across all the cells in 
each sample, assigning cells outside the cluster in question a score of 0. For each 

of our 11 signal-to-noise ratios, we then simulated ten independent attributes 
by summing this attribute with the appropriate amount of Gaussian noise. This 
resulted in 10 × 3 × 10 = 300 attributes per noise level.

Analysis of simulated non-null attributes. For each signal type, we analyzed the 
simulated attributes using (1) CNA accounting for possible batch effects and (2) 
MASC with the recommended inclusion of sample-level and batch-level random 
effects. MASC requires a set of clusters whose abundance it assesses for correlation 
with the attribute, so we ran four different versions of MASC using four different 
sets of clusters. These were created by running Leiden clustering on our data 
with resolution parameters of 0.2, 1, 2 and 5, resulting in 3, 15, 26 and 72 clusters, 
respectively.

To estimate power for a given signal type, we computed for each method and 
for each signal-to-noise ratio the fraction of tests in which the method reported 
a P value of less than 0.05. For CNA, we used the global P value. For MASC, we 
used the lowest P value for any individual cluster, multiplied by the number of 
clusters to achieve multiple testing correction. We quantified uncertainty in our 
power estimates by computing empirical standard errors for our estimate of this 
mean. In Fig. 2, we aggregated the four versions of MASC into one P value by 
computing the minimum P value across all four MASC clustering resolutions and 
Bonferroni correcting for four tests. Supplementary Fig. 5 shows results at the level 
of individual MASC clustering resolutions.

To define a notion of signal recovery for each method, we first used each 
method to obtain per-cell estimates of correlation to the attribute as follows. 
For CNA, we used the neighborhood coefficient for each cell, which is the 
per-neighborhood correlation to the attribute from the neighborhood for which 
that cell is the anchor. For MASC at a given clustering resolution, we assigned 
to each cell the signed effect size beta that MASC estimated for that cell’s parent 
cluster. We then defined ground truth per-cell scores for each signal type such that 
the noiseless version of each attribute would be obtained by averaging the per-cell 
scores of all the cells in each sample: for cluster abundance signals, we assigned a 
score of 1 to cells in the causal cluster and a score of 0 to other cells; for global GEP 
signals, we used the per-cell values of the canonical variable in question; and for 
cluster-specific GEP signals, we used the per-cell values of the PC in question, with 
a score of 0 assigned to all cells outside the cluster.

To estimate signal recovery for a given signal type, we then computed, for each 
method and for each signal-to-noise ratio, the average per-attribute correlation 
between the method’s reported per-cell scores and the ground truth per-cell scores 
for that attribute. Thus, signal recovery takes values between −1 (worst) and 1 
(best). We emphasize that this is distinct from correlating a method’s estimated 
per-sample attribute value with the ground truth simulated sample attributes. This 
latter approach would be an assessment of each method’s accuracy as a predictor of 
the sample attributes, whereas our approach assesses something more challenging: 
the ability of each method to identify the underlying causal cells driving the sample 
attribute in question. We quantified uncertainty in our estimate of signal recovery 
by computing empirical standard errors for our estimate of this mean. In Fig. 
2, we aggregated the four versions of MASC into one P value by averaging their 
accuracies. Supplementary Fig. 5 shows results at the level of individual MASC 
clustering resolutions.

Simulations at lower sample size. We adapted our simulation framework to the 
sepsis dataset at full sample size (N = 65) by Leiden clustering these cells at 
resolutions of 0.2, 1, 2 and 5 as in our TBRU simulations. This produced four 
sets of clusters as input to the cluster-based comparator method MASC. As in 
our TBRU simulations, Leiden 2 clustering was used to construct causal cluster 
and cluster-specific GEP simulated signals. We generated all three simulated 
signal types as described above, with the following two modifications: we used 
standard PCs rather than canonical variables to construct global GEP signals, and 
we included a broader range of noise levels, namely {0.01, 0.1, 0.2, …, 0.9, 0.99} 
proportion of variance in the final simulated attributes explained by additive noise. 
We ran CNA and MASC on all simulated signals without batch information or 
co-variates, paralleling the original published analysis of this dataset. This yielded 
the top two rows of Supplementary Fig. 7.

We then created downsampled versions of both the sepsis dataset and the TBRU 
dataset. For the TBRU dataset, we randomly selected samples for inclusion by batch 
to obtain three smaller datasets with 18 batches/N = 107, 12 batches/N = 71 and 8 
batches/N = 48. For the sepsis dataset, we randomly selected by sample for inclusion 
to obtain two smaller datasets with N = 40 and N = 20. For sepsis, we re-computed 
PCA on the smaller datasets to construct new nearest neighbor graphs. For TBRU, 
we did not recompute the CCA-based representation of the cells included after 
downsampling before we constructed new nearest neighbor graphs; therefore, there 
was some information leakage from the full TBRU dataset to the downsampled 
datasets. For each downsampled dataset, we re-clustered the cells anew at Leiden 
{0.2, 1, 2, 5} as input to MASC and again used Leiden 2 clustering to construct causal 
cluster and cluster-specific GEP simulated signals. We then ran our simulation 
framework on these smaller datasets to complete Supplementary Figs. 6 and 7.

Analyses of real data. We analyzed three real datasets: synovial fibroblasts from 
patients with RA versus OA (N = 12 samples, M = 27,216 cells)8; PBMCs from 
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patients with and without sepsis (N = 65 samples, M = 102,814 cells)7; and 
memory T cells from patients in a large TB progression cohort (N = 271 samples, 
M = 500,089 cells)6.

Analysis of RA dataset. We obtained the RA dataset from the authors of a study 
of synovium of patients with RA and OA. The dataset consisted of M = 27,216 
synovial cells from N = 12 samples profiled with scRNA-seq and processed with 
the Harmony algorithm to mitigate sample-specific effects. The cells also had 
cluster labels—identifying lining versus sub-lining populations—assigned by the 
authors of the original study. Mirroring the original study, we filtered this dataset 
to fibroblasts only. We then applied CNA to this dataset without co-variate or batch 
correction to produce a NAM with PCs as well as a P value for global association 
to RA/OA status and neighborhood-level correlations to RA/OA status with 
corresponding FDRs.

To assess whether NAM-PC1 was related to Notch activation, we obtained the 
per-cell Notch activation scores defined using the experimentally derived Notch 
activation gene set from the original study and computed the correlation across 
cells between these scores and the NAM-PC1 neighborhood loading assigned 
to each cell’s neighborhood. We computed a P value for whether this correlation 
was significantly greater than the corresponding correlation to Notch activation 
scores of per-cell pseduotime values by bootstrapping over samples to create a null 
distribution for the difference between the magnitudes of the two correlations.

To assess enrichment of Notch gene sets along NAM-PC1, we computed 
correlations for the top 5,000 most variable genes in the dataset between expression 
level in each cell and the cells’ anchored neighborhood loadings on NAM-PC1. 
Using these per-gene correlations as our input ranked list, we computed the 
enrichment of gene sets containing the term ‘NOTCH’ from MSigDB’s ‘C7’ 
catalogue of immune-related gene sets. We used R’s FGSEA package33 with a 
maximum gene set size of 500, a minimum size of 15 and 100,000 permutations. 
This approach to gene set enrichment analysis along a NAM-PC, which we refer 
to as ‘NAM-PC gene set enrichment analysis’, was also employed to investigate 
biological processes reflected by NAM-PC2 using gene sets from the Reactome 
database in MSigDB’s ‘C2’ catalogue.

Analysis of sepsis dataset. We downloaded the sepsis dataset of Reyes et al. from 
the Broad Institute Single Cell Portal. The dataset consisted of M = 102,814 CD45+ 
PBMCs from N = 65 samples profiled with scRNA-seq. The study consisted 
of three clinical cohorts: (1) patients presenting to the ED with urinary tract 
infection (UTI), divided into patients with leukocytosis but no organ dysfunction 
(Leuk-UTI, N = 10), urosepsis (Int-URO, N = 7) and persistent urosepsis (URO, N 
= 10); (2) bacteremic patients with sepsis in hospital wards (Bac-SEP, N = 4); and 
(3) patients admitted to the ICU with either sepsis (ICU-SEP, N = 8) or no sepsis 
(ICU-NoSEP, N = 7). There were also 19 healthy controls (Control, N = 19). In 
total, the study included 29 patients with sepsis (Int-URO, URO and Bac-SEP) and 
36 patients without sepsis (Control, Leuk-UTI and ICU-NoSEP).

To maximize comparability between the published analysis and ours, we 
analyzed the data following the same pre-processing steps as the original authors, 
namely: we removed cells with fewer than 100 unique molecular identifiers and 
genes with expression in fewer than cells, and then we log-normalized the counts 
and filtered out genes with mean expression <0.0125 or dispersion <0.5. The 
dataset also includes some samples that are enriched for dendritic cells; following 
the original analysis, we included these in the dataset but did not assign them 
phenotype labels so that they could be included in the unsupervised portion of the 
analysis but would not directly affect any of the association analyses.

The original study conducted case–control comparisons in nine different 
subgroups of patients with sepsis and controls (for example, {URO, Int-URO} 
versus {Control, Leuk-UTI}). We conducted the same nine association tests using 
CNA (without batch information or co-variates, following the original study) and 
found good qualitative agreement (Supplementary Table 5).

We then ran CNA on the aggregate phenotype of ‘any sepsis’, for which sepsis 
was defined as {Int-URO, URO, Bac-SEP, ICU-SEP}, and non-sepsis was defined 
as {Control, Leuk-UTI, ICU-NoSEP}. To assess for gene set enrichment in 
association with sepsis, we computed correlations for the top 5,000 most variable 
genes between expression level in each cell and the cells’ anchored neighborhood 
correlations to sepsis. Using these per-gene correlations as our input ranked list, 
we computed the enrichment of gene sets from the Pathway Interaction Database 
(PID) stored in MSigDB’s ‘C2’ catalogue. We used R’s FGSEA package33 with 
parameters as above.

To assess for heterogeneity within the 15 author-defined cell states, we then 
examined the distribution of CNA-estimated neighborhood correlations to the 
‘any sepsis’ phenotype within each published cell state (Supplementary Fig. 8). We 
identified MS4, TS2 and BS1 as the most visually striking examples of bimodality 
of these correlations within individual clusters.

To biologically characterize the cluster subpopulations identified by CNA, we 
performed differential expression and pathway enrichment analysis as follows. We 
compared the depleted subpopulations within each cluster found by CNA to have 
intra-cluster heterogeneity in effect size (TS1, TS2, MS4, DS1, DS2, BS1 and BS2) 
to (1) the remaining cells of the same published cluster (for example, TS1) and (2) 
the remaining cells of the same major cell type (for example, T cells). Then, using 

these per-gene correlations as our input ranked lists, we computed the enrichment 
of gene sets from the PID stored in MSigDB’s ‘C2’ catalogue and plotted these 
values in Supplementary Fig. 9. We used R’s FGSEA package33 with parameters as 
above.

We produced interpretations of each of the first five NAM-PCs in this dataset 
in two ways. First, we computed the correlation across samples between each 
NAM-PC’s sample loadings and the abundances per sample of each of the five 
main cell populations in the dataset—T cells, B, cells, monocytes, NK cells and 
dendritic cells—with corresponding analytic P values based on a beta-distributed 
null. We plotted these values as a heat map in Supplementary Fig. 11, retaining 
only those correlations that achieved nominal significance. Second, we conducted 
NAM-PC gene set enrichment analysis (see above) for gene sets from the PID 
stored in MSigDB’s ‘C2’ catalogue and plotted these values in Supplementary Fig. 
11.

Analysis of TB dataset. We obtained the pre-processed TBRU dataset directly 
from the authors of the index study7. This dataset consisted of M = 500,089 
memory T cells from N = 271 samples that were profiled with CITE-seq32, 
which simultaneously provides both scRNA-seq and single-cell quantification 
of 31 surface proteins. The TBRU cohort was designed to identify correlates of 
progression to active TB infection compared to latent TB infection. Accordingly, 
approximately half of the samples come from patients who had active TB at 
enrollment (4–7 years before the single-cell data were collected), and half of the 
samples come from household contacts of these patients who developed latent 
infections after enrollment. The dataset also contains sample-level attributes, such 
as age, sex, weight and ancestry, imputed from genotype information about each 
sample. See Supplementary Table 6 for the full list of sample-level information that 
we analyzed with CNA.

The authors of the original study used CCA to create a 20-dimensional 
representation of each cell that incorporated information shared by the RNA-seq 
and surface protein modalities. This representation was subsequently run through 
Harmony9 to remove potential sample-specific and batch effects. To maximize 
comparability between the published analysis and ours, we used this representation 
in all analyses unless stated otherwise.

Unsupervised analysis. We computed the initial NAM by running CNA on the full 
dataset with correction only for batch and per-sample averages of (1) the percent 
mitochondrial (pMT) reads of each cell and (2) the number of unique molecular 
identifiers (nUMIs) for each cell. To identify biological processes corresponding 
to NAM-PCs, we then computed the correlation per-gene (the top 5,000 most 
variable in the dataset) and per-protein between expression level in each cell and 
the cells’ anchored neighborhood loadings on each NAM-PC. To evaluate the 
extent to which NAM-PC2 reflects known sex differences in T cell populations, we 
computed per-sample the ratio of total cell fraction from CD4+-labeled clusters to 
total cell fraction from CD8+-labeled clusters using cluster assignments with cell 
type annotations from the original publication of this dataset6. We then computed 
the correlation (and corresponding analytical P value using a beta-distributed null) 
between CD4+/CD8+ ratio and sample loading on NAM-PC2. We also computed 
per-sample the ratio of total cell fraction in the T regulatory CD4+ cluster to total 
cell fraction from all CD4+-labeled clusters and computed the correlation (and P 
value) between this ratio and sample loading on NAM-PC2. Finally, we computed 
the correlation across cells between NAM-PC2 neighborhood loadings and 
binary cell membership in CD4+-labeled clusters, CD8+-labeled clusters and the T 
regulatory cluster (Supplementary Fig. 12 and Supplementary Tables 12 and 13.)

Association analysis for TB progression phenotype. We analyzed the TB 
progression attribute with CNA, controlling for the same co-variates that the 
authors of the original study used in their analysis: pMT, nUMI, age, age squared, 
sex, season of blood draw and percent European ancestry. We retained cells whose 
neighborhood coefficients showed correlation to TB progression at FDR < 0.05. 
These cells clearly segregated into two contiguous groups in UMAP space: a 
depleted population and an enriched population. We examined the genes, among 
the top 5,000 most variable, and the surface proteins whose expression per-cell 
was most highly correlated with the cells’ anchored neighborhoods’ estimated 
abundance correlations to the TB phenotype.

Association survey across many sample-level attributes. We one-hot encoded all 
categorical attributes and standardized all continuous attributes. We then removed 
any attributes with missing values for more than 10% of samples, any one-hot 
categorical attributes with fewer than 20 individuals represented and one from 
every attribute pair with a correlation greater than 0.75. Seventeen of the attributes 
were retained after this step. We then determined for each of these 17 attributes 
y which others (including TB progression status) had a nominally significant 
(P < 0.05) correlation to y and included those as co-variates when analyzing y. 
Using the resulting selected co-variates, shown in Supplementary Table 6, we ran 
CNA. Using the 31 clusters previously identified in these data, we ran a per-cluster 
association test with identical co-variate control for each attribute. We added 
multiple hypothesis testing correction across clusters and for both cluster-based 
analysis and CNA, across the 17 attributes tested. For each attribute with a globally 
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significant association by CNA, we examined the genes, among the top 5,000 
variable genes, and the surface proteins whose expression per anchor cell was 
most highly correlated with corresponding neighborhood coefficients to the given 
attribute.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article

Data availability
All data analyzed during this study are available in three previously published 
articles6–8. Source data are provided with this paper.

Code availability
An open-source repository containing code for running CNA is available at 
https://github.com/immunogenomics/cna; an open-source repository containing 
code underlying all figures and tables is available at https://github.com/
immunogenomics/cna-display; and an open-source repository containing code 
underlying all simulations is available at https://github.com/immunogenomics/
cna-sim. Source data are provided with this paper.
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