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Efficient and precise single-cell reference atlas
mapping with Symphony
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Recent advances in single-cell technologies and integration algorithms make it possible to
construct comprehensive reference atlases encompassing many donors, studies, disease
states, and sequencing platforms. Much like mapping sequencing reads to a reference
genome, it is essential to be able to map query cells onto complex, multimillion-cell reference
atlases to rapidly identify relevant cell states and phenotypes. We present Symphony
(https://github.com/immunogenomics/symphony), an algorithm for building large-scale,
integrated reference atlases in a convenient, portable format that enables efficient query
mapping within seconds. Symphony localizes query cells within a stable low-dimensional
reference embedding, facilitating reproducible downstream transfer of reference-defined
annotations to the query. We demonstrate the power of Symphony in multiple real-world
datasets, including (1) mapping a multi-donor, multi-species query to predict pancreatic cell
types, (2) localizing query cells along a developmental trajectory of fetal liver hematopoiesis,
and (3) inferring surface protein expression with a multimodal CITE-seq atlas of memory
T cells.
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dvancements in single-cell RNA-sequencing (scRNA-seq)

have launched an era in which individual studies can
routinely profile 104-10° cells!~3, and multimillion-cell
datasets are already emerging®°. Single-cell resolution enables the
discovery and refinement of cell states across diverse clinical and
biological contexts®~!1. To date, most studies redefine cell states
from scratch, making it difficult to compare results across studies
and thus hampering reproducibility. Coordinated large-scale
efforts, exemplified by the Human Cell Atlas (HCA)!2, aim to
establish comprehensive and well-annotated reference datasets
comprising millions of cells that capture the broad spectrum of
cell states. Building these reference atlases requires integrating
multiple datasets that may have been collected under different
technical and biological conditions. Hence, reference construction
requires application of one of many recently developed single-cell
integration algorithms!3-1. Our group previously developed
Harmony!, a fast, accurate, and well-reviewed method?® that is
able to explicitly model complex study design, a property that
makes it suitable for integrating complex datasets into reference
atlases?!-24, The potential to define common cell states using
reference maps has already been demonstrated?>2%. For example,
we built an integrated reference of ~80,000 single-cell profiles of
fibroblasts from human lung, synovium, salivary gland, and
intestine and successfully mapped fibroblasts from human skin
and mouse synovium, lung, and intestine to analyze conserved
states across tissues and species2°. Once such reference atlases are
painstakingly constructed, interpretation of new datasets requires
the ability to quickly map single-cell profiles into these reference
atlases. This enables interpretation of new datasets by transferring
annotations and metadata of interest from nearby reference cells.
Fast mapping of query cells against a large, stable reference is a
well-recognized open problem?” and active area of research?8-30,
One inefficient but accurate approach to project reference and
query cells into a joint embedding is to integrate both sets of cells
together de novo, resulting in what might be considered a “gold

standard” embedding. While this approach is reasonable for
relatively small reference datasets, it is intractable for atlas-sized
references with millions of cells. It requires users to rebuild the
reference for each analysis, which may be computationally chal-
lenging and require administratively cumbersome exchanges of
large-scale datasets. Furthermore, de novo integration may cor-
rupt the reference embedding once a reference is carefully con-
structed and annotated. It is instead preferable to freeze the
reference when mapping new query cells onto it.

Here, we define reference mapping to mean placing query cells
within the same embedding as integrated reference cells without
requiring access to the raw data on all individual reference cells.
Importantly, this embedding does not take advantage of any
particular annotation, such as cell type labels, which may be
refined or updated over time. This is in contrast to automated cell
type classifiers, such as scmap?!, which assign rigid annotations
based on reference datasets in a supervised manner. Reference
mapping approaches introduced so far include Seurat??, which is
compatible with Seurat anchor-based integration!8, and scArches,
which is compatible with autoencoders such as scANVI32 and
trVAE33. These approaches separate reference building, which
integrates datasets in the reference into a low-dimensional
embedding, from query mapping, which uses a compressed ver-
sion of the reference to efficiently map cells into the reference
embedding. They further contrast with de novo integration
methods like BBKNN34, Seurat anchor-based integration!, and
Harmony!”, which enable reference building but are slow and
require access to the raw data and batch information on indivi-
dual reference cells. High-quality reference mapping requires
both a framework to efficiently store an integrated reference, and
a fast and accurate procedure to map query datasets.

An ideal reference mapping algorithm must meet several key
requirements. First, similar to de novo integration algorithms, it
must be able to remove confounding signals due to complex study
design in both the reference and query. In addition, it must be

Harmonized b Symphony Minimal
Reference Datasets Reference Embedding Reference Elements
[ ] Cluster-specific
EE A AL NN linear models for PCs
»
T Harmony dataset et Symphony "
; ’ Compression .
a Aa integration
—> —
Compress mixture
model components @
o - .
]
s .l .,
- |
¢ d Query Embedding e
Symphony Mapping o
ol Query Annotations
Y Y8 e .®
Query Dataset 1. Project cells e - ° s eecoe
into PC space * e ° LN ]
eceocoe N - 3y > =
eecoe ” 4 >
2. Soft assign cells to ° 4.Remove “
reference clusters ® ’r. o @ cell-specific EEEE
3. Assign mixture o gl o correction e o©
model components ‘ | values (<--) ® Downstream transfer
. L) of reference annotations
(e.g. cell types)

Approximate location of query cells
in harmonized reference embedding

Fig. 1 Symphony overview. Symphony comprises two algorithms: Symphony compression (a, b) and Symphony mapping (¢, d). a To construct a reference
atlas, cells (colored shapes) from multiple datasets are embedded in a lower-dimensional space (e.g., PCA), in which dataset integration (Harmony) is
performed to remove dataset-specific effects. Shape indicates distinct cell types, and color indicates finer-grained cell states. b Symphony compression
represents the information captured within the harmonized reference in a concise, portable format based on computing summary statistics for the
reference-dependent components of the linear mixture model. Symphony returns the minimal reference elements needed to efficiently map new query
cells to the reference. € Given an unseen query dataset (red circles) and compressed reference, Symphony mapping precisely localizes the query cells to
their appropriate locations within the integrated reference embedding (d). Reference cell locations do not change during mapping. e The resulting joint
embedding can be used for downstream transfer of reference-defined annotations to the query cells.
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able to scale to large datasets, map with high accuracy, and enable
inference of diverse query cell annotations based on reference
cells. We present Symphony, a novel algorithm to compress a
large, integrated reference and map query cells to a precise
location in the reference embedding within seconds. Through
multiple real-world dataset analyses, we show that Symphony can
enable accurate downstream inference of cell type, developmental
trajectory position, and protein expression, even when the query
itself contains complex confounding technical and biological
effects.

Results

Symphony compresses an integrated reference for efficient
query mapping. Symphony comprises two main algorithms:
reference compression and mapping (Methods, Supplementary
Fig. 1a). Symphony reference compression captures and structures
information from multiple reference datasets into an integrated
and concise format that can subsequently be used to map query
cells (Fig. 1a, b). Symphony builds upon the linear mixture model
framework first introduced by Harmony!”. Briefly, in a low-
dimensional embedding, such as principal component analysis
(PCA), the model represents cell states as soft clusters, in which a
cell’s identity is defined by probabilistic assignments across one or
more clusters. For de novo integration of the reference datasets
(using Harmony), cells are iteratively assigned soft-cluster
memberships, which serve as weights in a linear mixture model
to remove unwanted covariate-dependent effects. Then, Symph-
ony compresses the reference into a mappable entity, leveraging
the reference-learned model parameters to add new query cells to
the embedding. It maps cells into the reference without any
iterative assignment and keeps reference cells stable.

To store the reference efficiently without saving information on
individual reference cells, Symphony computes summary statis-
tics learned in the low-dimensional space (Fig. 1b, Methods),
returning computationally efficient data structures containing the
“minimal reference elements” needed to map new cells. These
include the means and standard deviations used to scale the
genes, the gene loadings from PCA (or another low-dimensional
projection, e.g., canonical correlation analysis [CCA]) on the
reference cells, soft-cluster centroids from the integrated
reference, and two “compression terms” (a kx1 vector and
kx d matrix, where k is the number of clusters and d is the
dimensionality of the embedding) (Methods, Supplementary
Methods, Supplementary Fig. 1b).

To map new query cells to the compressed reference, we apply
Symphony mapping. The algorithm approximates integration of
reference and query cells de novo (Methods), but uses only the
minimal reference elements to compute the mapping (Supple-
mentary Fig. 1c). First, Symphony projects query gene expression
profiles into the same uncorrected low-dimensional space as the
reference cells (e.g., PCs), using the saved scaling parameters and
reference gene loadings (Fig. 1c). Second, Symphony computes
soft-cluster assignments for the query cells based on proximity to
the reference cluster centroids. Finally, to correct unwanted user-
specified technical and biological effects in the query data,
Symphony assumes the soft-cluster assignments from the
previous step and uses stored mixture model components to
estimate and regress out the query batch effects (Fig. 1d).
Importantly, the reference cell embedding remains stable during
mapping. Embedding the query within the reference coordinates
enables downstream transfer of annotations from reference cells
to query cells, including discrete cell type classifications,
quantitative cell states (e.g., position along a trajectory), or
expression of missing genes or proteins (Fig. le).

Symphony approximates de novo integration of PBMCs
without reintegration of reference datasets. As we demonstrate
in the Methods, Symphony is equivalent to running de novo
Harmony integration if three conditions are met: (I) all cell states
represented in the query dataset are captured by the reference
dataset, (II) the number of query cells is much smaller than the
number of reference cells, and (IIT) the query dataset has a design
matrix that is independent of reference datasets (i.e., non-
overlapping batches in reference and query). As the scope of
available single-cell atlases continues to grow, it is reasonable to
assume that reference datasets are large and all-inclusive, making
conditions (I) and (II) well-supported. Condition (III) is also
typically met if the query data was generated in separate experi-
ments from the reference.

To demonstrate that Symphony mapping closely approximates
running de novo integration on all cells, we applied Symphony to
20,571 peripheral blood mononuclear cells (PBMCs) assayed with
three different 10x technologies: 3'v1, 3v2, and 5. We performed
three mapping experiments. For each, we built an integrated
Symphony reference from two technologies, then mapped the third
technology as a query. The resulting Symphony embeddings were
compared to a gold standard embedding obtained by running
Harmony on all three datasets together. Visually, we found that the
Symphony embedding for each mapping experiment (Fig. 2a) closely
reproduced the overall structure and cell type information of the gold
standard embedding (Fig. 2b). To quantitatively assess the degrees of
dataset mixing we use the Local Inverse Simpson’s Index (LISI)!”
metric. For a given categorical label assigned to each cell (in this case,
technology), LISI indicates the effective number of categories
represented in the local neighborhood of each cell; higher LISI
scores correspond to better mixing of cells across batches. LISI scores
in Symphony embeddings (mean LISI =2.12, 95% CI [2.12, 2.13])
and de novo integration embeddings (mean LISI=2.15, 95% CI
[2.14, 2.16]) were nearly identical (Fig. 2c, Methods).

To directly assess similarity of the local neighborhood structures,
we computed the correlation between the local neighborhood
adjacency graphs generated by Symphony and de novo integration.
We define a new metric called k-nearest-neighbor correlation (k-NN-
corr), which quantifies how well the local neighborhood structure in
a given embedding is preserved in an alternative embedding by
looking at the correlation of neighbor cells sorted by distance
(Supplementary Fig. 2a—e; Methods). Anchoring on each query cell,
we calculate (1) the pairwise distances to its k nearest reference
neighbors in the gold standard embedding and (2) the distances
between the same query-reference neighbor pairs in the alternate
embedding (Methods), then calculate the Spearman correlation
between (1) and (2). k-NN-corr ranges from -1 to +1, where +1
indicates a perfectly preserved sorted ordering of neighbors. We find
that for k = 500, the Symphony embeddings produce a k-NN-corr >
0.4 for 87.7% of cells (and positive k-NN-corr for 99.9% of cells),
demonstrating that Symphony not only maps query cells to the
correct broad cluster but also preserves the distance relationships
between nearby cells in the same local region (Fig. 2d). As a
comparison, we calculated k-NN-corr for a simple PC projection of
the query cells (with no correction step) using the original reference
gene loadings prior to integration and observed significantly lower
correlations (Wilcoxon signed-rank p <2.2e-16), with k-NN-corr >0.4
for 50.2% of cells (Supplementary Fig. 2f).

Symphony enables accurate cell type classification of PBMCs
across technologies. If Symphony is effective, then cells should be
mapped close to cells of the same cell type, enabling accurate cell type
classification. To test this, we performed post-mapping query cell
type classification in the 10x PBMCs example from above. Once
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Fig. 2 Symphony approximates de novo integration without reintegration of the reference cells. Three PBMC datasets were sequenced with different
10x protocols: 5’ (yellow, n = 7508 cells), 3'v2 (blue, n = 8305 cells), and 3'v1 (red, n = 4758 cells). We ran Symphony three times, each time mapping
one dataset onto a reference built from integrating the other two. a Symphony embeddings generated across the three mapping experiments (columns).
Top row: cells colored by query (yellow, blue, or red) or reference (gray), with query cells plotted in front. Bottom row: cells colored by cell type: B cells (B),
dendritic cells (DC), hematopoietic stem cells (HSC), megakaryocytes (MK), CD14 4 or CD16 + monocytes (Mono_CD14, Mono_CD16), natural killer
cells (NK), or CD4 + or CD8 + T cells (T_CD4, T_CD8), with query cells plotted in front. b For comparison, gold standard de novo Harmony embedding
colored by dataset (top) and cell type (bottom). ¢ Distribution of technology LISI scores for query cell neighborhoods in the Symphony, gold standard, and a
standard PCA embeddings on all cells, colored by query dataset. Boxplot center line represents the median; lower and upper box limits represent the 25%
and 75% quantiles, respectively; whiskers extend to box limit £1.5 x IQR; outlying points plotted individually. d Distributions of k-NN-corr (Spearman
correlation between the distances between the neighbor-pairs in the gold standard embedding and the distances between the same neighbor-pairs in the
Symphony embedding) across query cells for k = 500, colored by query dataset. Dotted vertical lines denote mean k-NN-corr. e Classification accuracy as
measured by cell type F1-scores for query cell type annotation using 5-NN on the Symphony embedding.

query cells are mapped into the reference low-dimensional feature
embedding, users can choose any downstream model to predict
query labels from the reference cells using their shared harmonized
features as input (Methods). To demonstrate this, we used a simple
and intuitive k-NN classifier to annotate query cells across 9 cell types
based on the majority vote of each query cell's 5 nearest reference
neighbor cells in the harmonized embedding and compared the
predictions to the ground truth labels assigned a priori with lineage-
specific marker genes (Methods, Supplementary Tables 2 and 3).
Across all three experiments, predictions using the Symphony
embeddings achieved 97.5% accuracy overall, with a median cell type
F1-score (harmonic mean of precision and recall, ranging from 0 to
1) of 0.97 (Fig. 2e, Supplementary Table 4). This indicates that
Symphony appropriately localizes query cells in harmonized space to
enable the accurate transfer of cell type labels.

Automatic cell type classification represents an open area of
research31:3°-38_ Existing supervised classifiers assign a limited set of
labels to new cells based on training data and/or marker genes. To
benchmark Symphony-powered downstream inference against
existing classifiers, we followed the same procedure as a bench-
marking analysis in Abdelaal et al.3>. The benchmark compared 22
cell type classifiers on the PbmcBench dataset consisting of two
PBMC samples sequenced using 7 different protocols®®. For each
protocol train-test pair (42 experiments) and donor train-test pair

(additional 6 experiments; Methods), we built a Symphony
reference from the training dataset then mapped the test dataset.
We used the resulting harmonized feature embedding to predict
query cell types using three downstream models: 5-NN, SVM with
radial kernel, and multinomial logistic regression. The Symphony-
based classifiers achieve consistently high cell type F1-scores
(average median F1 of 0.79-0.87) comparable to the top three
supervised classifiers for this benchmark (scmap-cell, singleCellNet,
and SCINA, average median F1 of 0.77-0.83; Fig. 3a and
Supplementary Fig. 3). As discussed in Abdelaal et al.3>, some
classifiers (including SCINA) leave low-confidence cells as
“unclassified.” Hence, for the Symphony-based k-NN model, we
also enabled the option for Symphony to leave cells as unclassified
based on a prediction confidence score (Methods), which measures
the proportion of reference neighbors with the winning vote. For
this option, we only assigned labels for cells with >60% confidence
(which excluded ~14% of cells). Notably, a limitation of this
benchmark is that the reference in each experiment consists of a
single dataset (no reference integration involved).

Symphony maps against a large reference within seconds. To
demonstrate scalability to large reference atlases, we evaluated
Symphony’s computational speed. We downsampled a large
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Fig. 3 Symphony matches performance of top supervised classifiers and maps to large references within seconds. a Following the cross-technology
PBMC benchmarking from Abdelaal et al.35, we ran a total of 48 train-test experiments per Symphony-based classifier. Two different versions of the Symphony
feature embeddings were generated depending on variable gene selection method: top 2000 variable genes (vargenes) or top 20 differentially genes (DEGs)
expressed per cell type. Symphony embeddings were used to train 3 downstream classifiers: k-NN (k =5), SVM with radial kernel, and multinomial logistic
regression (GLM) with ridge. Symphony (blue) median cell-type Fl-scores across 48 train-test experiments compared to supervised methods (white),
demonstrating comparability to top supervised methods and stable performance regardless of downstream classification method. For “predconf>0.6" options,
only cells with >60% prediction confidence were included (>4 out of 5 reference neighbors with winning vote). Boxplot center line represents the median (of
median Fl-scores); lower and upper box limits represent the 25% and 75% quantiles, respectively; whiskers extend to box limit £1.5 x IQR; outlying points
plotted individually. Red dot indicates mean of median F1-scores across 48 experiments (used for ordering along the x-axis). b Total elapsed time (in seconds)
required to run Symphony reference building starting from gene expression (left), Symphony query mapping starting from query gene expression (middle), or
de novo Harmony integration (right) for different-sized reference (x-axis) and query (colors) datasets downsampled from the memory T-cell CITE-seq dataset.
¢ Runtime comparison between Symphony, Seurat, and scArches (colors), for building different-sized references (measured in mins) and mapping different-
sized queries onto a 50,000-cell reference (measured in secs, plotted on log scale). Note: all methods were run on Linux CPUs (allotting 4 cores each for
Symphony and Seurat, 48 cores for scArches). All jobs were allocated a maximum of 120 GB of memory and 24 h of runtime.

memory T-cell dataset? to create benchmark reference datasets
with 20,000, 50,000, 100,000, 250,000, and 500,000 cells (from 12,
30, 58, 156, and 259 donors, respectively). Against each reference,
we mapped three different-sized queries: 1000, 10,000, and
100,000 cells (from 1, 6, and 64 donors) and measured total
elapsed runtime (Fig. 3b). The speed of the reference building
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process is comparable to that of running de novo integration
since they both start with expression data and require a full
pipeline of scaling, PCA, and Harmony integration. However, a
reference need only be built and saved once in order to map all
subsequent query datasets onto it. For instance, initially building
a 500,000-cell reference with Symphony took 5163 s (86.1 min)
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and mapping a subsequent 10,000-cell query onto it took only
0.99 s, compared to 4806 s (80.1 min) for de novo integration on
all cells. Symphony offers a 5000x speedup in this application.
Compared to alternative reference mapping approaches Seurat
and scArches, Symphony was 1-3 orders of magnitude faster and
the only method to scale to large datasets (>100,000 cells) without
requiring prohibitive memory (>120 GB) or runtime (>24h)
requirements (Fig. 3c, Methods, Supplementary Table 5). To
directly test Symphony’s scalability to multimillion cell atlases, we
built a reference of 1.39 million cells (270 samples) from a recent
COVID-19 dataset*! in 17.7h and mapped a held-out query of
72,781 (14 samples) in 11.0 s (Methods, Supplementary Fig. 4).
These results show that Symphony scales efficiently to map
against multimillion-cell references, enabling it to power potential
web-based queries within seconds.

Importantly, Symphony mapping time does not depend on the
number of cells or batches in the reference since the reference
cells are modeled post-batch correction (Methods); however, it
does depend on the reference complexity (number of centroids k
and dimensions d) and number of query cells and batches
(Supplementary Tables 6 and 7) since the query mapping
algorithm solves for the query batch coefficients for each of the
reference-defined clusters.

Symphony maps multi-donor, multi-species study to reference
of human pancreatic islet cells. A query dataset might include
data from multiple donors, species, and perturbations that create
confounding signals obscuring biological signal of interest. Inte-
gration algorithms remove these signals in de novo analysis, and
it is essential that reference mapping removes them too. There-
fore, we designed Symphony to simultaneously handle both tasks:
mapping query to reference cells and integration within the
query. To test the ability of Symphony to integrate query datasets
during mapping, we analyzed reference and query datasets of
pancreatic islet cells in which both the reference and query have
complex experimental structure (Fig. 4a). The reference con-
tained 5,887 pancreatic islet cells from 32 human donors across
four independent studies*’~4>, each profiled with a different
plate-based scRNA-seq technology (CEL-seq, CEL-seq2, Smart-
seq2, and Fluidigm Cl1). Cell types were previously annotated
using cluster-specific marker genes within each reference dataset
separately (Methods). The query contained 8569 pancreatic islet
cells from four human donors and 1866 cells from two mice, all
profiled with inDrop, a droplet-based scRNA-seq technology
absent in the reference*® (Fig. 4b). PCA of the query dataset alone
demonstrated the magnitude of the confounding species and
donor signals, emphasizing the need for within-query integration
(Supplementary Fig. 5a).

Symphony mapped the multi-species, multi-donor, droplet-
based query into the reference by effectively and simultaneously
removing the effects of species, donor, and technology (Fig. 4c, d);
reference mapping obtained superior integration compared to
PCA (mean donor LISI =2.72 compared to 1.45). We predicted
that integrating over three nested sources of variation would
make it possible to accurately predict query cell types. Using a
simple 5-NN classifier in the harmonized embedding, we
observed accurate cell-type prediction. Using ground truth labels
defined by the original publication®, we obtained a median cell
type Fl-score of 0.96 (overall accuracy 96%) for human and
median cell type F1 of 0.95 (overall accuracy 91%) for mouse cells
(Supplementary Fig. 5¢, d and Supplementary Tables 8 and 9), By
mapping against a reference, Symphony is able to overcome
strong species effects and simultaneously map analogous cell
types between mouse and human.

Next, we evaluated the ability of the other reference mapping
algorithms, scArches and Seurat, to integrate the same query
dataset. For each mapping method, we built a reference using its
compatible de novo integration method (Methods, Fig. 4c and
Supplementary Fig. 5b). Symphony obtained higher levels of
integration than did Seurat and scArches, both between reference
and query as well as donors within the query (Fig. 4e, f and
Supplementary Table 10). Symphony mapping achieves comparable
donor mixing to that of Harmony de novo integration of all five
datasets (mean mapping LISI =2.67 vs. de novo LISI=2.55 in
human, 291 vs. 2.7 in mouse, Supplementary Fig. 6¢c, d). In
contrast, the other mapping methods return less integrated
embeddings, when compared to their corresponding de novo
methods (mean mapping LISI=2.04 vs. de novo LISI=2.96 for
Seurat in human, 2.46 vs. 3.09 in mouse; 1.12 vs. 2.52 for scArches/
trVAE in human, and 1.24 vs. 3.05 in mouse; Supplementary
Fig. 6¢, d and Supplementary Table 10). Reference mapping should
place query cells into the reference embedding, but not at the
expense of disrupting the query’s original low-dimensional
structure. Therefore, we developed a new metric called within-
query k-NN correlation (wiq-kNN-corr), which is similar to the k-
NN-corr metric but instead measures how well the original query
low-dimensional structure is preserved after mapping. Anchoring
on each query cell, we calculate it’s (1) distances to the k nearest
neighbors in the original query PCA embedding within each query
batch (in this case, donor) and (2) the distances to those same k
cells after reference mapping. Then, wiq-kNN-corr is the Spearman
correlation between (1) and (2), ranging between -1 and 1 where
higher values represent better retention of the sorted ordering of
original neighbors. We observe that for k =500, Symphony and
Seurat exhibit nearly identical wig-kNN-corr (mean wiq-kNN-corr
= 0.59 in human, 0.55 in mouse for Symphony; 0.6 in human, 0.57
in mouse for Seurat), whereas scArches performs more poorly on
this metric (0.19 in human, 0.13 in mouse) (Fig. 4g). Finally, we
evaluated the cell type prediction accuracy of each method
(Methods). We observed that Symphony and Seurat performed
comparably well, and both outperformed scArches on both human
and mouse cell type prediction (Supplementary Fig. 5¢, d and
Supplementary Tables 8 and 9).

Localizing query cells along a reference-defined trajectory of
human fetal liver hematopoiesis. A successful mapping method
should position cells not only within cell type clusters but also
along smooth transcriptional gradients, commonly used to model
differentiation and activation processes over time (Fig. 5a). To
test Symphony in a gradient mapping context, we built a refer-
ence atlas profiling human fetal liver hematopoiesis, containing
113,063 liver cells from 14 donors spanning 7-17 post-
conceptional weeks of age and 27 author-defined cell types,
sequenced with 10x 3’ chemistry (Fig. 5b and Supplementary
Fig. 7a)%”. Trajectory analysis of immune populations with the
force directed graph (FDG) algorithm*’ highlights relationships
among progenitor and differentiated cell types (Fig. 5¢). Notably,
the hematopoietic stem cell and multipotent progenitor popula-
tion (HSC/MPP) branches into three major trajectories, repre-
senting the lymphoid, myeloid, and megakaryocyte-erythroid-
mast (MEM) lineages. This reference contains two forms of
annotation for downstream query inference: discrete cell types
and positions along differentiation gradients.

We mapped a query consisting of 21,414 new cells from 5 of
the original 14 donors, sequenced with 10x 5 chemistry
(Supplementary Fig. 7c). We first inferred query cell types with
k-NN classification (Methods) and confirmed accurate cell
type assignment based on the authors’ independent query
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annotations?’, achieving median cell type Fl-score of 0.83 and
overall accuracy of 85.0% for k =30 (Supplementary Fig. 8a and
Supplementary Table 11). Correctly predicted cells generally had a
higher proportion of reference neighbors supporting the predicted
label (Supplementary Fig. 8b, c). To assess sensitivity to the
parameter of k for inference, we tested values of k ranging from 5

2 3
LISI (query donors)

10 05 00 05 10
Within—query k-NN-corr

i 5 6

to 50 and found that median F1 remained highly stable
(0.82-0.84) across choices of k (Supplementary Fig. 8d). To
evaluate query trajectory inference, we used the Symphony joint
embedding to position query cells from the MEM lineage
(n=5141) in the reference-defined trajectory by averaging the
FDG coordinates of the 10 nearest reference cells (Supplementary
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Fig. 4 Symphony maps multi-donor, multi-species study to human pancreatic islet cell reference. a Schematic of mapping experiment with reference
(n = 5887 cells, 32 donors) built from four human pancreas datasets and query dataset (n =10,455 cells, from four human donors and two mouse donors)
sequenced on a new technology (inDrop). b Bar plot shows relative proportions of cell types per query donor. We integrated the reference datasets de
novo using Harmony, Seurat anchor-based integration, or trVAE, then mapped the query onto the corresponding reference using Symphony, Seurat, or
scArches, respectively. UMAP plots of the resulting joint embeddings showing ¢ density of integrated reference cells colored by cell type and d individual
query cells colored by cell type (as defined by Baron et al.46) (left) or donor identity (right) with reference densities plotted in the back in gray. Degree of
integration for each method was measured by LISI metric between reference and query labels (ref_query) (e) and LISI between query donors (f) for each
query cell neighborhood, faceted by species (human: n = 8569 cells from four donors, mouse: n = 1866 cells from two donors). Boxplot center line
represents the median; lower and upper box limits represent the 25% and 75% quantiles, respectively; whiskers extend to box limit £1.5 x IQR; outlying
points plotted individually. g Degree to which the query low-dimensional structure is preserved after mapping, as measured by within-query k-NN
correlation (wig-kNN-corr, with k =500) calculated across all query cells, within each query donor. Vertical lines indicate the mean wig-kNN-corr.

Fig. 7c). The inferred query trajectory (Fig. 5d) recapitulated
known branching from MEM progenitors (MEMPs, brown) into
distinct megakaryocyte (green), erythroid (blue, pink), and mast
cell (yellow) lineages. Moreover, transitions from MEMPs to
differentiated types were marked by gradual changes in canonical
marker genes (Fig. 5e): PPBP for megakaryocytes, HBB for
erythrocytes, and KIT for mast cells. These gradual expression
patterns are consistent with correct placement of query cells along
differentiation gradients.

Symphony helps identify query cell types missing in the
reference. Although the first assumption of Symphony is that the
reference is comprehensive, users may not always be aware if
their query contains new “unseen” cell states prior to mapping.
Symphony will typically map missing query states onto their most
similar reference state(s) in these situations. To help users flag
unseen cell states, we developed two metrics that help users detect
and remove poorly mapping cells (Methods): (1) per-cell mapping
metric and (2) per-cluster mapping metric. These metrics are
based on Mahalanobis distance, a multivariate distance metric
analogous to the univariate Z-score. They measure how far away
query cells (1) or user-defined query clusters (2) are from the
reference cell states in the low-dimensional embedding, where
higher metrics indicate worse mapping.

In general, we found that these metrics were potentially useful
for flagging novel cell types (Supplementary Note 1). For
example, we tested the metric using the fetal liver hematopoiesis
dataset described above and found that the ability to call out a
query cell type as novel depends on the cell type as well as what is
present in the reference (Supplementary Figs. 9-11). In situations
where the missing cell types are very different from the reference
(mapping non-immune cell types like fibroblasts, endothelial
cells, and hepatocytes onto an immune-only reference), the
mapping metrics are able to clearly distinguish the missing cell
states as novel (per-cell AUC=0.997, per-cluster AUC= 1.0,
Supplementary Fig. 9). In situations where the novel cell types are
very similar to an existing reference cell state, the metrics may
have more difficulty in identifying them. For example, when
Kupffer cells (specialized tissue-resident liver macrophages) are
missing in the reference (Supplementary Fig. 11), they map onto
the closely related (immediate precursor) “Monocyte-Macro-
phage” reference cell state (per-cell AUC=0.633, per-cluster
AUC=0.963). Our metrics are in general comparable to the
Seurat mapping score, though different metrics offer the strongest
performance under different scenarios (Supplementary Note 1
and Supplementary Figs. 12 and 13).

Symphony maps tumor-derived cells onto a healthy atlas.
Given that Symphony maps unseen query cells to their most
similar reference type, we hypothesized that Symphony may be
able to map tumor-derived cells onto an atlas of corresponding

healthy tissue. As an exploratory analysis, we built a reference
(n=27,203 cells) of healthy fetal kidney*$ and mapped a renal
cell carcinoma (RCC) dataset (n= 34,326 cells)*°, transferring
reference cell type labels to the query using 10-NN and com-
paring the predicted labels to the original annotations from Bi
et al. (Methods, Fig. 6). As a sanity check, we observed excellent
correspondence between the original and predicted annotations
for immune and stromal cell types (Fig. 6¢c). We next examined
the mapping results for the cells from the three tumor programs
(TP1, TP2, and Cycling Tumor) originally defined by Bi et al. We
found that TP1 and TP2 both primarily mapped to the reference
“Proximal tubule” cell type and its direct precursor (“Medial S
shaped body”); Cycling Tumor primarily mapped to “Medial S
shaped body”, “Proximal tubule”, and “Proliferating distal renal
vesicle,” concordant with a more actively proliferating phenotype
(Fig. 6d). These results are consistent with prior literature, as RCC
has been thought to arise from proximal tubule cells®. Compared
to the immune/stromal compartments, the tumor cells exhibited
higher per-cell mapping metrics, indicating that they are less well-
represented by the reference (Fig. 6e). This example demonstrates
how intentionally mapping novel cell types, such as cancer cells
onto a healthy atlas, can potentially provide biologically infor-
mative results.

Extension of Symphony to scATAC-seq data. We next won-
dered whether Symphony may be extended to other single-cell
modalities, especially scATAC-seq. As a proof-of-concept analy-
sis, we built a reference (n=1736 cells) using a published
scATAC-seq dataset of flow-sorted cells capturing hematopoietic
differentiation®!>2, leaving out one donor (n =298 cells) to map
as a query (Supplementary Fig. 14). We modified Symphony to
use the shared open chromatin peaks as input features rather than
genes (Methods) and were able to map the query cells such that
84% of cells were assigned their known cell type or the immediate
precursor type (Supplementary Fig. 14d, e).

Inferring query surface protein marker expression by mapping
to a reference assayed with CITE-seq. Recent technological
advances in multimodal single-cell technologies (e.g., CITE-seq)
make it possible to simultaneously measure mRNA and surface
protein expression from the same cells using oligonucleotide-
tagged antibodies>>>*. With Symphony, we can construct a
reference from these data, map query cells from experiments that
measure only mRNA expression, and infer surface protein
expression for the query cells to expand possible analyses and
interpretations (Fig. 7a).

To demonstrate this, we used a CITE-seq dataset that measures
the expression of whole-transcriptome mRNA and 30 surface
proteins on 500,089 peripheral blood memory T cells from
271 samples?®, We leveraged both mRNA and protein features to
build a multimodal reference from 80% of samples (n =217) and
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Fig. 5 Localizing query cells along a trajectory of fetal liver hematopoiesis. a Schematic showing precise placement of query cells along a continuous
reference-defined trajectory. In this example (b-e), the reference (n =113,063 cells, 14 donors) was sequenced using 10 x 3' chemistry, and the query
(n= 25,367 cells, 5 donors) was sequenced with 10x 5' chemistry. b Symphony reference colored by cell types as defined by Popescu et al.4”. Contour fill
represents density of cells. Black points represent soft-cluster centroids in the Symphony mixture model. ¢ Reference developmental trajectory of immune
cells (FDG coordinates obtained from original authors). Query cells in the MEM lineages (n = 5141 cells) were mapped against the reference and query
coordinates along the trajectory were predicted with 10-NN (d). The inferred query trajectory preserves branching within the MEM lineages, placing
terminally differentiated states on the ends. e Expression of lineage marker genes (PPBP for megakaryocytes, HBB for erythroid cells, and KIT for mast
cells). Cells colored by log-normalized expression of gene.

NATURE COMMUNICATIONS | (2021)12:5890 | https://doi.org/10.1038/s41467-021-25957-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Healthy Fetal Kidney Reference (n=27,203)

cell_type

17 Mogakaryosyte

10

35 o
i
£l

Mapping RCC (Bi et al.) against fetal kidney reference d

UMAP2

0 0
UMAP1

Reference Query Lymphoid @  Query Putative Tumor
Query Myeloid  ® Query Stromal

9 Tumor cell annotations

Original
annotation
byBietal

Immune and stromal cell type annotations

|| Mast cell
TAM

MitoHigh Myeloid [l 0.8
DC

| Monocyte
NKT

NK
CDg+ T cel
—Helper
T-Reg 04
u B cel
| Plasma cell 5
Endothelial 0
u Fibroblast
o

002

o1ko0toN
190 §

1189 YN

ploiyiAig
aikooydwA| el eyeuu

jydosineN

se0 1sely

sbeydosoeiy
1199 1 ¥a2

1180 1 800
3usH Jo dooT

fpog padeys S eipen

angn} [ewiixold
an) [ewixoid - 9d/IND
Apoq padeys S [E1sIQ
an
1se
Jousboid el
[oisen [eual [e1siq

an eisip - wniayyda dijed
o[o1SoA [eual

swAyoussew deo bu
B[oISeA [eual [Bisip bul

Symphony annotation (10-NN)

Original
annotation

by Bietal. Query per—cell mapping metric

TP1 05

P2

Cycling Tumor

—
Per—cell mapping metric

i i | 2=
il

Query cell type

Symphony annotation (10-NN)

Fig. 6 Mapping tumor cells onto an atlas of healthy tissue. We built a reference of healthy fetal kidney#8 and mapped a renal cell carcinoma dataset#°. a
UMAP of healthy fetal kidney reference (n= 27,203 cells), colored by cell type as defined by the original publication. b Mapping tumor query dataset

(which contains myeloid, lymphoid, stromal, and tumor compartments) onto the reference. Cells colored by reference (gray) or query compartment (as
defined by original authors). ¢, d Heatmaps comparing original query cell types (rows), as defined by Bi et al., to the predicted reference cell types from
Symphony (columns) for € immune and stromal compartments and d tumor cells. Color bar indicates the proportion of query cells per original cell type that
were predicted to be of each reference type (rows sum to 1). Columns sorted by hierarchical clustering on the average gene expression (all genes) for the
cell types to order similar types together. e Boxplot of per-cell mapping metric per query cell type (higher values indicate less confidence in the mapping),
colored by tumor cells (orange) or immune/stromal (green) as defined in Bi et al. Boxplot shows query cells from 8 donors across 17 cell types: Cycling
tumor (n =117 cells), Tumor program 2 (TP2, n=4599), Tumor program 1 (TP1, n=3324), Fibroblast (n = 91), Endothelial (n =271), Tumor-associated
macrophage (TAM, n = 5053), Mitochondrial-High myeloid (n =1407), Mast cell (n =39), Monocyte (n =1157), Dendritic cell (DC, n = 419), Plasma cell
(h=463), T-Helper (n=3284), CD8 + T cell (n =9056), Natural killer (NK, n = 2245), B cell (n=962), T-Regulatory cell (T-Reg, n=750), and Natural
killer T cell (NKT, n=811). Boxplot center line represents the median for the cell type; lower and upper box limits represent the 25% and 75% quantiles,

respectively; whiskers extend to box limit 1.5 X IQR; outlying points plotted individually.

map the remaining 20% of samples (n = 54). Instead of using
PCA, which is best for one modality>>, we used canonical
correlation analysis (CCA) to embed reference cells into a space
that leverages both. Specifically, CCA constructs a pair of
correlated low-dimensional embeddings, one for mRNA and
one for protein features, each with a linear projection function
akin to gene loadings in PCA. We corrected reference batch
effects in CCA space with Harmony and built a Symphony
reference (Fig. 7b), saving the gene loadings for the CCA
embedding from mRNA features. Then, we mapped the held-out
query using only mRNA expression to mimic a unimodal scRNA-
seq experiment, reserving the measured query surface protein
expression for validation. To mitigate sparsity and variability in
detection, we defined ground truth protein values using 50-NN
smoothing of the measured values from CITE-seq (i.e., averaging
the expression of 50 nearest neighbors in the embedding,
Methods). We accurately predicted the surface protein expression
of each query cell using the 50-NN average from the nearest
reference cells in the harmonized embedding. For all proteins, we
found strong concordance between predicted and ground truth
expression (Pearson r: 0.88-0.99, Fig. 7c, d). For all but three
proteins, we achieved comparable results with as few as 5 or 10
nearest neighbors (Supplementary Fig. 15a).

We note that it is also possible to conduct the same analysis with
a unimodal PCA-based reference built from the cells mRNA

expression only. This approach has slightly worse performance for
some proteins (Pearson r: 0.65-0.97, Supplementary Fig. 15b-d),
demonstrating that a reference built jointly on both mRNA and
protein permits better inference of protein expression than an
mRNA-only reference, which is consistent with previous observa-
tions that mRNA expression is not fully representative of protein
expression®>>4. This analysis highlights how users can start with a
low-dimensional embedding other than PCA, such as CCA, to
better capture rich multimodal information in the reference.

Discussion

Mapping query cells onto large, annotated references in real time
and without the need to share sensitive information from the
reference datasets is becoming increasingly important for repro-
ducible single-cell analysis. We approached this inherently com-
plex, big-data problem using well-established mathematical
methods from integration analysis. We framed reference mapping
as a specialized case of integration between one relatively small
dataset and a second larger, more comprehensive, and previously
integrated dataset. As the reference is already integrated, it is
natural to use the same mathematical framework from the inte-
gration to perform mapping. For instance, the scArches?8 algo-
rithm uses an autoencoder-based framework to map to references
built with autoencoder-based integration algorithms3233. Similarly,
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Fig. 7 Mapping onto a multimodal reference to infer query surface protein expression in memory T cells. a Schematic of multimodal mapping

experiment. The dataset was divided into training and test sets (80% and 20% of samples, respectively). The training set was used to build a Symphony
reference, and the test set was mapped onto the reference to predict surface protein expression in query cells (pink) based on 50-NN reference cells
(gray). b Symphony reference built from mRNA/protein CCA embedding. Contour fill represents density of reference cells (n =395,373 cells from

217 samples). Black points represent soft-cluster centroids in the Symphony mixture model. ¢ We measured the accuracy of protein expression prediction
with the Pearson correlation between predicted and ground truth expression for each surface protein across query cells in each donor (total n =104,716
cells from 54 samples). Bar height represents the mean per-donor correlation for each protein, error bars represent standard deviation, and individual data
points show correlation values per donor. d Ground truth and predicted expression of CD4, CCR6, and CD69 based on CCA reference. Ground truth is the
50-NN-smoothed expression measured in the CITE-seq experiment. Colors are scaled independently for each marker from minimum (blue) to maximum

(yellow) expression.

Symphony uses the mixture modeling framework to map to
references built with Harmony mixture modeling integration.
Symphony compresses the reference by extracting relevant
reference-derived parameters from the mixture model to map query
cells in seconds. With this compression, references can be dis-
tributed without the need to share raw expression data or donor-
level metadata, which enables data privacy>®. Symphony compres-
sion greatly reduces the size of a reference dataset: for the memory
T-cell dataset of 500,089 cells, the raw expression matrix is 8.9 GB,
whereas the Symphony minimal reference elements are 1.3 MB.
Useful reference atlases contain annotations absent in the
query, such as cell type labels (Fig. 4), trajectory coordinates
(Fig. 5), or multimodal measurements (Fig. 7). Reference map-
ping can also be useful to standardize multiple query datasets
derived from different sources into a common embedding or set
of labels for downstream analysis, such as testing for differential
abundance of cell states between groups (e.g., cases vs.
controls)®’~%°, Transfer of annotations from reference to query is
an open area of research that includes algorithms for automated
cell type classification31:3>-38, We approach annotation transfer in
two steps. We first learn a predictive model in the reference
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embedding, and then map query cells and use their reference
coordinates to predict query annotations. In this two-step
approach, Symphony mapping provides a feature space but is
otherwise independent from the choice of downstream inference
model. In PBMC type prediction (Fig. 3a), we used Symphony
embeddings to train multiple competitive classifiers: k-NN, SVM,
and logistic regression. In our specific analyses, we found that a
simple k-NN classifier can achieve high performance with only
5-10 neighbors, and modestly outperformed SVM and logistic
regression (Fig. 3a). In practice, users can choose more complex
inference models if it is warranted for certain annotations.
Moreover, we expect prediction results to improve as more
standardized annotations emerge, such as pre-defined cell type
taxonomies provided by the Cell Ontology®® project.

Single-cell reference mapping using modalities beyond scRNA-
seq poses unique challenges. For example, in scATAC-seq, peaks
are not standardized and are typically redefined by peak calling
algorithms in each analysis. Hence, it is not immediately clear
how to optimally select the best peak features to perform refer-
ence mapping when reference and query datasets have been
analyzed with different peak sets. One approach may be to remap
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query reads to the reference open chromatin regions or binning
the genome into small (e.g., 500 or 1kbp) regions. As another
example, multimodal single-cell integration is an important area
of active research. For the CITE-seq analysis, we used one strategy
(CCA) based on finding shared variation between modalities®’,
but alternative approaches have been proposed3*°! that may be
optimal for specific applications.

As mapping is a special case of integration, we expected
Symphony mapping to recapitulate the results of de novo Har-
mony integration. To this end, we defined three conditions under
which Symphony and de novo integration with Harmony yield
equivalent results. In subsequent examples, we showed that
Symphony still performs well when the last two conditions are
relaxed. The pancreas query contains more cells than its reference
(condition II), while the liver hematopoiesis reference and query
overlap in donors (condition III). Condition I, which requires
comprehensive cell type coverage in the reference, is less flexible.
When the query contains a novel cell type, it will be aligned to its
most transcriptionally similar reference cluster. In some cases,
this may be advantageous. For example, one can intentionally
utilize this behavior to find similar reference cell states, such as
mapping tumor cells onto healthy tissue (Fig. 6). Note that
condition I only pertains to cell types and not clinical and bio-
logical contexts. For instance, we successfully mapped the mouse
pancreas query to an entirely human pancreas reference (Fig. 4),
because the same pancreatic cell types are shared in both species.

Identification of novel cell-types that have failed to map is an
important future direction for mapping algorithms. To identify
potentially novel cell-types, we provide two mapping metrics and
a prediction confidence score to aid users in flagging and
removing poorly mapping cells. We recognize that these metrics
may be less informative in cases where the novel population is
very similar to an existing reference population. Hence, Symph-
ony does not entirely supplant the need for users interested in
novel cell type discovery to conduct de novo analyses of the
query alone.

Choosing which reference(s) to use is a key question in a
reference-based analysis. When selecting a reference, one should
consider (1) the relevance and comprehensiveness of the refer-
ence relative to the biological question of interest, (2) similarity of
the cell-types being queried, (3) similarity of the technology used
to assay the reference versus the query, (4) quality and resolution
of cell-level annotations and any associated metadata, including
the availability of additional modalities (e.g., CITE-seq), and (5)
reference size (number of cells and samples included). For
instance, a cell-type-specific embedding like the memory T-cell
reference (Fig. 7) may be able to capture more variability within a
given cell type compared to an unsorted PBMCs reference
(Fig. 2), which may better capture variability across multiple
immune populations. Similarly, a reference with only healthy
individuals is useful for annotating normal cell types, while a
reference with both healthy and diseased individuals is useful for
annotating both physiologic and pathologic cell states. It may also
be useful to map the query to several references and consider the
results in aggregate. For example, one may first map cells to a
comprehensive atlas for the tissue or context of interest for
coarse-grained annotations, then remap cells from certain cell
types onto cell-type-specific references (e.g., T-cell-only) for more
fine-grained annotations.

Instead of a single monolithic reference for all cell types across
all tissues and disease, we expect the proliferation of multiple,
well-annotated specialized references that focus on fine-grained
modeling of diverse biological systems. In this initial release of
Symphony, we provide eight pre-built reference atlases (Table 1)
and an efficient, user-friendly pipeline to facilitate community
expansion of high-quality references for the single-cell

community. We encourage atlas builders to share their datasets as
a mappable reference on open-access data repositories, such as
Zenodo. As more large-scale tissue and whole-organism single-
cell reference atlases become available in the near future,
Symphony will enable investigators to leverage the rich infor-
mation in these references to perform integrative analyses and
transfer reference coordinates and diverse annotations to new
datasets in a rapid and reproducible manner.

Methods

Symphony overview. The goal of single-cell reference mapping is to embed newly
assayed query cells into an existing comprehensive reference atlas, facilitating the
automated transfer of annotations from the reference to the query. The optimal
mapping method needs to be able to operate at various levels of resolution, capture
continuous intermediate cell states, and scale to multimillion cells?’. Consider a
scenario in which we wish to map a query of m cells against reference datasets with
n cells, where m < n. Unsupervised integration of measurements across donors,
studies, and technological platforms is the standard way to compare single-cell
datasets and identify cell types. Hence, a “gold standard” reference mapping
strategy might be to run Harmony integration on all m + n cells de novo. However,
this approach is impractical because it is cumbersome and time-intensive to pro-
cess all the cell-level data for the reference datasets every time a user wishes to
reharmonize it with a query. Instead, we envision a pipeline where a reference atlas
need only be carefully constructed and integrated once, and all subsequent queries
can be rapidly mapped into the same stable reference embedding.

Symphony is a reference mapping method that efficiently places query cells in
their precise location within an integrated low-dimensional embedding of reference
cells, approximating de novo harmonization without the need to reintegrate the
reference cells. Symphony comprises of two algorithms: reference compression and
mapping. Expanding upon the linear mixture model framework introduced in
Harmony!7, Symphony compression takes in an integrated reference and faithfully
compresses it by capturing the components of the model into efficient data
structures. The output of reference compression is the minimal set of elements
needed for mapping (Supplementary Fig. 1b). The Symphony mapping algorithm
takes as input a new query dataset as well as minimal reference elements and
returns the appropriate locations of the query cells within the integrated
embedding (Supplementary Fig. 1c).

Once a harmonized reference is constructed and compressed using Symphony,
subsequent mapping of query cells executes within seconds. Efficient
implementations of Symphony are available as part of an R package at https://
github.com/immunogenomics/symphony, along with several precomputed
references constructed from public scRNA-seq datasets. The following sections
introduce the Symphony model, then describes Symphony compression and
mapping in terms of the underlying data structures and algorithms. We also
provide Supplementary Methods containing more detailed derivations for
reference compression terms.

Glossary. We define all symbols for data structures used in the discussion of
Symphony below, including their dimensions and possible values. Dimensions are
in terms of the following parameters:

n the number of reference cells

m the number of query cells

N the total number of cells (n + m)

g the number of genes in the reference after any gene selection

d the dimensionality of the embedding (e.g., PCs); applies to both reference

and query.

b the number of batches in the reference

¢ the number of batches in the query

k the number of clusters in the mixture model for reference integration

(representing latent cell states)

Reference-related symbols:

G, € R$*" Input reference gene expression matrix, prior to
i3 g p

. scaling. . '
G, € R¢ Scaled reference gene expression matrix.

X, € {0, 1}P*" One-hot design matrix assigning reference cells
(columns) to batches (rows).

Zero matrix assigning reference cells (cols) to query
batches (rows). All values are 0 because reference cells
do not belong to query batches. This term is used in
the derivation for the reference compression terms.
Reference gene means used to center each gene

for PCA.

Reference gene standard deviations used to scale each
gene for PCA.

X, e {0}

pe Re!

o e R&*!
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Table 1 A compendium of pre-built Symphony reference atlases.

Data source

Zenodo Link

Description

Name

10x Genomics

Link [https://zenodo.org/record/

5090425]

Healthy human PBMCs (n=20,571)

10x PBMCs Atlas

sequenced using three 10x protocols (3'v1,

3'v2, 5

Segerstolpe et al.#2; Lawlor

Link [https://zenodo.org/record/

5090425]

Pancreatic islet cells (n=5887) from 32

human donors; from 4 separate studies

Pancreatic Islet Cells Atlas

et al.43; Grun et al.#4; Muraro

et al.4>

Popescu et al.47

Link [https://zenodo.org/record/

5090425]

Human fetal liver cells (n=113,063) from

14 donors, sequenced with 10x (3")

Fetal Liver Hematopoiesis Atlas

Stewart et al.48

Link [https://zenodo.org/record/

5090425]

27,203) from

Human fetal kidney cells (n

6 samples

Healthy Fetal Kidney Atlas

Nathan et al.40

Link [https://zenodo.org/record/

5090425]

Human memory T cells (n=500,089)
from a tuberculosis cohort (259 donors)

assayed with CITE-seq

Memory T Cell (CITE-

seq) Atlas

Korsunsky et al.2>

Link [https://sandbox.zenodo.org/
record/772596#.YOdFIhNKjlw]

Human fibroblasts (n =79,148) from

Cross-tissue Fibroblast Atlas

74 samples spanning 4 inflammatory
tissues and corresponding controls

Zhang et al.26

Link [https://zenodo.org/record/

5090425]

Immune cells (n=307,084) from 125

Cross-tissue Inflammatory

Immune Atlas

healthy or disease-affected donors across

6 inflammatory diseases

The Tabula Muris
Consortium®2

Link [https://zenodo.org/record/

5090425]

Mouse cells from 23 tissues and organs
(n=110,824 cells) across the lifespan.

Tabula Muris Senis

(FACS) Atlas

Ue R& Gene loadings from the original PCA (before
Harmony integration).

Original (pre-harmonized) PC embedding for
reference cells.

Integrated embedding for reference cells in
harmonized PC (hPC) space, as output by Harmony.
Soft cluster assignment of reference cells (cols) to
clusters (rows), output by Harmony. Each column is a
probability distribution that sums to 1.

Cluster centroid locations in the harmonized
embedding, L2-normalized.

3D tensor of the estimated parameters (betas and
intercepts) of the linear mixture model for each of k
clusters for the reference cells.

Z, =3Vl e R™"
Zr c Ré*n

R, € [0, 11"

Y ERka

cos.

B e RkX(H—h)Xd
N N

N, € Rk First reference compression term. Vector containing
the size of each of the k clusters, effectively the
number of reference cells contained within them.

Ce R Second reference compression term.

Ref = {u,0,U,Y_,,N,,C} Set of Symphony minimal reference elements.

Query-related symbols:

Input query gene expression matrix, prior to scaling.
Query gene expression matrix, scaled by reference gene
means p and standard deviations o.

Design matrix assigning query cells (cols) to query batches
(rows).

Z,= EqVZ € R™ Query cell locations in original (pre-harmonized) reference
PC embedding.

Approximate query cell locations in integrated embedding
(hPC space). Output of Symphony reference mapping.
Soft cluster assignment of query cells (cols) to clusters
(rows). Each column is a probability distribution that
sums to 1.

3D tensor of the estimated parameters (betas and intercepts)
of the linear mixture model for each of k clusters.

G, € R$*™
q
gxm
G € R

X, € {0, 1}

5 dxm
quR

e
R, € [0, 117"

kx (14c)x d
B, e R

Symphony model and conditions for equivalence to Harmony integration.
Symphony and Harmony both use a linear mixture model framework, but the two
methods perform different tasks: Harmony integrates a reference, whereas
Symphony compresses the reference and enables efficient query mapping. To
motivate the Symphony model, it is helpful to first briefly review the mixture
model, which serves as the basis. Harmony integrates scRNA-seq datasets across
batches (e.g., multiple donors, technologies, studies) and projects the cells into a
harmonized embedding where cells cluster by cell type rather than batch-specific
effects. Harmony takes as input a low-dimensional embedding of cells (Z) and
design matrix with assignments to batches (X) and outputs a harmonized
embedding (Z) with batch effects removed. Briefly, Harmony works by iterating
between two subroutines—maximum diversity clustering and linear mixture model
correction—until convergence. In the clustering step, cells are probabilistically
assigned to soft clusters with a variant of soft k-means with a diversity penalty
favoring clusters represented by multiple datasets rather than single datasets. In the
correction step, each cluster learns a cluster-specific linear model that explains cell
locations in PC space as a function of a cluster-specific intercept and batch
membership. Then, cells are corrected by cell-specific linear factors weighted by
cluster membership to remove batch-dependent effects. The full algorithm and
implementation are detailed in Korsunsky et al.1”.

In the scenario of mapping m query cells against n reference cells, the de novo
integration strategy would model all cells as in Eq. (1), where the H subscript
denotes the Harmony solution, in contrast to the Symphony model, which is
presented in Eq. (2). Let Xy € {0, 1} 0" represent the one-hot encoded
design matrix assigning all cells across batches. Xj; denotes X;; augmented with a
row of 1 for the batch-independent intercept term: Xy;=1||Xy. The intercept
terms represent cluster centroids (location of “experts” in the mixture of experts
model). Zy; represents the low-dimensional PCA embedding of all cells. Ry
represents the probabilistic assignment of cells across k clusters, and diag(Ryy) €
RN*N denotes the diagonalized kth row of Ry. For each cluster k, the parameters
of the linear mixture model B e RUTY*4 can therefore be solved for as in Eq.
(1), using ridge regression with ridge penalty hyperparameter A. Note that we do
not penalize the batch-independent intercept term: Ay = 0, ¥oep (crppha = 1-

De novo Harmony model:

* *r -1 *
B, = (deiag(Rﬂk)xﬂT + M) X;;diag(Ryg ) Zh )

The goal of Symphony mapping is to add new query cells to the model in order
to estimate and remove the query batch effects. Symphony mapping approximates
de novo Harmony integration on all cells, except the reference cell positions in the
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Symphony minimal reference elements

Additional components of a full Harmony reference

G, € R9*" Input reference gene expression matrix, prior to scaling.

X, € {0,107

B. c Rk*(+b)xd

r

zr c Rdxn

R, €[0,1]"
sums to 1.

Table 2 Symphony minimal reference elements vs. additional components of Harmony reference.

First reference compression term. Vector containing the size of each of the k clusters, effectively the number of reference cells

pe R Reference gene means used to center each gene for PCA.
o e R Reference gene standard deviations used to scale each gene for PCA.
Ue R Gene loadings to project from expression to PCA (or CCA) space.
Yo € IE%‘?” Cluster centroid locations in harmonized PC space, L2-normalized.
N, ¢ R™

contained within them.
C e R¥¢ Second reference compression term.

Design matrix assigning reference cells (cols) to reference batches (rows).

3D tensor of the estimated parameters (betas and intercepts) of the linear mixture model for each of k clusters for the reference cells.
Integrated embedding for reference cells in harmonized PC (hPC) space, as output by Harmony.

Soft cluster assignment of reference cells (cols) to clusters (rows), as output by Harmony. Each column is a probability distribution that

Table 3 Components of Symphony query.

Soft cluster assignment of query cells (cols) to clusters (rows). Each column is a probability distribution that sums to 1.

G, € R¥*™ Input query gene expression matrix, prior to scaling.
Xg € {0, 13" Design matrix assigning query cells (cols) to query batches (rows).
;q e R™m Query cell locations in original (pre-harmonized) PC embedding.
Z, e R®*m Approximate query cell locations in integrated embedding (hPC space).
kx
R, € [021]1 m ,
B, e R x (o 3D tensor of the estimated parameters (betas and intercepts) of the linear mixture model for each of k clusters.

harmonized embedding do not change. In order for Symphony mapping to be
equivalent to de novo Harmony, several conditions must be met:

1. All cell states represented in the query dataset are captured by the reference
datasets—i.e., there are no completely novel cell types in the query.
II. The number of reference cells is much larger than the query (m < n).

III.  The query dataset is obtained independent of the reference datasets—i.e., the
reference batch design matrix (X,) has no interaction with the query batch
design matrix (Xq).

We consider these to be fair assumptions for large-scale reference atlases,
allowing Symphony to make three key approximations:

(1) With a large reference, the reference-only PCs approximate the PCs for the
combined reference and query datasets. This allows us to project the query
cells into the pre-harmonized reference PCA space using the reference gene
loadings (U).

(2) The cluster centroids (Y) for the integrated reference cells approximate the
cluster centroids from harmonizing all cells.

(3) The reference cell cluster assignments (R.) remains approximately stable
with the addition of query cells.

Given these approximations, we can thereby harmonize the reference cells a
priori and save the reference-dependent portions of the Harmony mixture model
(Supplementary Methods). In Symphony, we model the reference cells as already
harmonized with batch effects removed, so we can thereafter ignore the reference
design matrix structure. The Symphony design matrix X € [0, 1] assigns all cells
(reference and query) to query batches only. X~ denotes X augmented with a row
of 1s (X;,_]) corresponding to the batch-independent intercepts (we model the
intercepts for all cells). The remaining ¢ rows (X[*I:Q]) represent the one-hot batch
assignment of the cells among the ¢ query batches. Note that for the reference cell
columns, these values are all 0 since the reference cells do not belong to any query
batches. The parameters (B € RO+ of the model for each cluster k can then
be solved for as in Eq. (2). Similar to Harmony, we use ridge regression penalizing
the non-intercept terms, where Ay = 0, Ve[, g4, = 1.

Symphony model:

By ~ (X diag(R)X T+ M) X diag(R,)Z" @

The matrix R € R¥N denotes the assignment of query and reference cells
(columns) across the reference clusters (rows). Z € R**Y denotes the horizontal
matrix concatenation of the uncorrected query cells in original PC space (Zy) and
corrected reference cells in harmonized space (i,). For each cluster k, let matrix
By € RO+*4 represent the query parameters to be estimated. The first row of
B represents the batch-independent intercept terms, and the remaining c rows of

B represent the query batch-dependent coefficients, which can be regressed out
to harmonize the query cells with the reference. Note that the intercept terms from
Symphony mapping should equal the cluster centroid locations from the integrated
reference since the harmonized reference cells are modeled only by a weighted
average of the centroid locations for the clusters over which it belongs (and a cell-
specific residual). Hence, the reference cell positions should not change when
removing query batch effects.

The matrices X', Ry, and Z in Eq. (2) can be partitioned into query and
reference-dependent portions. In the Supplementary Methods, we show in detail
how the reference-dependent portions can be further simplified into a kx 1 vector
and kx d matrix (N, and C), which we call the reference compression terms.
Intuitively, the vector N, contains the size (in cells) of each reference cluster. The

matrix C = R,ZrT does not have as intuitive an explanation but follows from the
derivation (Supplementary Methods). These terms can be computed at the time of
reference building and saved as part of the minimal reference elements to reduce
the necessary computations during mapping.

Reference building and compression. Reference compression is the key idea that
allows for the efficient mapping of new query cells into the harmonized reference
embedding without the need to reintegrate all cells. To construct a Symphony
reference with minimal elements needed for mapping, reference cells are first
harmonized in a low-dimensional space (e.g., PCs) to remove batch-dependent
effects. Symphony then compresses the Harmony mixture model components to be
saved for subsequent query mapping.

Symphony takes as input a gene expression matrix for reference cells (G,) and
corresponding one-hot-encoded design matrix (X,) containing metadata about
assignment of cells to batches. It outputs a set of data structures, referred to as the
Symphony “minimal reference elements”, that captures key information about the
reference embedding that can be subsequently used to efficiently map previously
unseen query cells (Algorithm 1). These components include the gene means (w)
and standard deviations (o) used to scale the genes, the PCA gene loadings (U), the
final L2-normalized cluster centroid locations (Y), and precomputed values
which we call the “reference compression terms” (N, and C) that expedite the
correction step of query mapping (Supplementary Methods). These elements are a
subset of the components available once Harmony integration is applied to the
reference cells. Note that other input embeddings, such as canonical correlation
analysis (CCA), may be used in place of PCA as long as the gene loadings to
perform query projection into those coordinates are saved.

Table 2 lists the Symphony minimal reference elements required to perform
mapping. Table 2 also shows which additional components of a full Harmony
reference are not included in the Symphony minimal reference elements.
Importantly, the dimensions of the Symphony data structures do not require
information on the # individual reference cells and hence do not scale with the raw
number of reference cells. Rather the components scale with the biological
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complexity captured (i.e., number of clusters k and dimensionality of embedding
d). Conversely, the Harmony data structures store information on a per-cell basis
(n). Note that in practice the integrated embedding of reference cells (2,) is saved
to the reference because it is needed to perform downstream transfer of
annotations from reference to query cells (e.g., k-NN), but it is not required during
any computations of the mapping step.

Starting from reference cell gene expression, we first perform within-cell library
size normalization (if not already done) and variable gene selection to obtain G,,
scaling of the genes to have mean 0 and variance 1 (saving y and o for each gene),
and PCA to embed the reference cells in a low-dimensional space, saving the gene
loadings (U) (Implementation Details). Then, the PCA embedding (Z,) and batch
design matrix (X,) are used as input to Harmony integration to harmonize over
batch-dependent sources of variation. Given the resulting harmonized embedding
(Zr) and final soft assignment of reference cells to clusters (R,), the locations of the
final reference cluster centroids Y € R**¥ can be calculated as in Eq. (3) and saved.

Y= ZR" ©)

Symphony then computes the reference compression terms N, (intuitively, the
number of cells per cluster) and C, which does not have an intuitive explanation

but can be directly computed as C = R,Z;r. Refer to the Supplementary Methods
for a complete mathematical derivation of the compression terms. Symphony
reference building ultimately returns the minimal reference elements:

u,0,U, Y, N,, and C (Supplementary Fig. la).

cos?

Algorithm 1. Build Symphony reference.
function BUILDREFERENCE(G,, X,)

1, 6, G5 « SCALE(G,)
U,Z, « PCA(Gys)
Z., R, < HARMONIZE(Z,, X,)

Y « Z.RT

Y.;
Yeps « | "I/
s (IYeall,

N; < rowSums(R,)

o L, normalize cluster centroids

o First compression term

aT .
C < R,Z, o Second compression term

Ref < {1,6,U, Y05, Ny, €}

return Ref o Return minimal reference elements

Query mapping. The Symphony mapping algorithm localizes new query cells to
their appropriate locations in the harmonized embedding without the need to run
integration on the reference and query cells altogether. The joint embedding of
reference and query cells can be used for downstream analyses, such as transferring
cell type annotations from the reference cells to the query cells.

Symphony mapping takes as input the gene expression matrix for query cells (G),
query design matrix assigning query cells to batches (X,), and the precomputed
minimal elements for a reference (Ref). It outputs a query object containing the
locations of query cells in the integrated reference embedding (Zq; Algorithm 2).
Table 3 lists the components of the query object that is returned by Symphony.

The input to the query mapping procedure is a gene expression matrix (Gg) and
design matrix (Xy) for query cells, and the output is the locations of the cells in the
harmonized embedding (Zq). At a high level, the mapping algorithm first projects the
query cells into the original, pre-harmonized PC space as the reference cells using the
reference gene loadings (U) and assigns probabilistic cluster membership across the
reference cluster centroid locations. Then, the query cells are modeled using the
Symphony mixture model and corrected to their approximate locations in the integrated
embedding by regressing out the query batch-dependent effects (Algorithm 2).

Projection of query cells into pre-harmonized PC space. Symphony projects the
query cells into the same original PCs (Z,) as the reference. Symphony assumes
that, given a much smaller query compared to the reference (m < n), the PCs will
remain approximately stable with the addition of query cells. To project the query
cells, we first subset the query expression data by the same variable genes used in
reference building and scale the normalized expression of the genes by the same
means (p) and standard deviations (o) used to scale the reference cells. Let Gqs
denote the query gene expression matrix scaled by the reference gene means and
standard deviations. We can then use the reference gene loadings (U) to project G,

into reference PC space. In Eq. (4), Z; € R*™ denotes the PC embedding for the
query cells. Note that if an alternate starting embedding (e.g., CCA) is used instead

of PCA, the gene loadings must be saved to enable this query projection step.

Z,=U"Gy, =2V, @
Soft assignment across reference clusters. Once the query cells are projected into PC
space, we soft assign the cells to the reference clusters using the saved reference
centroid locations (Y,). Symphony assumes that the reference cluster centroid
locations remain approximately stable with the addition of a much smaller query
dataset since the query contains no novel cell types. Under these conditions, we use
a previously published objective function for soft k-means clustering in Eq. (5),
which includes a distance term and an entropy regularization term over R weighted
by hyperparameter s. This is the same objective function as the clustering step of
Harmony, except it does not include the diversity penalty term. In Harmony, the
purpose of the diversity term is to penalize clusters that are only represented by one
or a few datasets (suggesting they do not represent true cell types). In contrast,
Symphony does not require the use of a diversity penalty because the reference
centroids have already been established. Furthermore, the query cell types can
comprise a subset of a larger set of reference cell types, and therefore not all clusters
are necessarily expected to be represented in the query. We can solve for Ry, the
optimal probabilistic assignment for query cells across each of the k reference
clusters (see Query mapping implementation details).

min 3Ry 1 2.5 = Ypagl* + sRycy log(Rycy)
’ 5
SLYY Ry >0, Y, SRy = 1 ©)
Mixture of experts correction. The final step in Symphony mapping is to model then
remove the query batch effects to obtain Zq, the approximate location of query cells
in the harmonized reference embedding. In Eq. (2), we modeled the reference and
query cells together and wish to solve for the query parameters B € RO+ for
each cluster k. The reference-dependent terms in Eq. (2) were previously computed
and saved in compressed form (N, and C). With Ry and Z calculated from query
cell projection and clustering, we can finally solve for Bg,. Similar to the correction
step of Harmony, we obtain cell-specific correction values for the query cells by
removing the batch-dependent terms captured in By,..}- Note that the reference
batch terms are neither modeled nor corrected during reference mapping, so the
harmonized reference cells do not move.

The final locations of the query cells in the harmonized embedding are
estimated by iterating over all k clusters and subtracting out the non-intercept
batch terms for each cell weighted by cluster membership, as in Eq. (6). Intuitively,
the query centroids are moved so that they overlap perfectly with the reference
centroids in the harmonized embedding. The vector 2q[i] denotes the approximate
location in harmonized PC space for query cell i. Note that mapping results may
slightly differ based on whether one maps query cells all together (correcting for
query batches) or maps each query batch separately. As all query cells play a role in
parameter estimation if mapped altogether, the batches are technically not
independent.

Zi] = Zk:Rq[kj] [sz[o,] + Bqu[lzc,i]Xq] +e
7 _ T
Zqiy =2 — 2 RynciBaigre 1 Xq ©)

7 _ T
Zqip = 2 RypeiBawo.g ¢

Algorithm 2. Map query cells onto reference
function QUERYMAPPING(Gg, X4, Ref)

Ggs < SCALE(Gy, Ref$p, Ref$a) © $ denotes accessing a component of Ref

Z, < PCAPROJECTION(Ggg, Ref$U)
Rq « CLUSTER(Zg, Ref$Yco5)
Zq — Zq
fork < 1..k do

E « x;]Rfl“)x;T © Xg denotes query design matrix augmented with row of 1s
Efo0) < Ejo0 + Ref$Nyiq

»pK 5T

F < X;R{Z]
Fo,] < Fjo,) + Ref$Cpyc
Bg < (E+ AD7'(F)
Bgko,) < 0 = Do not correct the intercept terms
7 7 T y+pK)
Zq < Zq— BaXqRq

return iq © Return query locations in hPC space

Reference building implementation details
Normalization. Starting with the gene expression matrix for reference cells, we
perform log(CP10K + 1) library size normalization of the cells (if not already
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done). Log-normalization is recommended and performed by default (and used in
all scRNA-seq analyses in the manuscript). However, Symphony can be used with
other normalization methods, such as SCTransform®? or TE-IDF (see scATAC-seq
analysis). The only requirement is that reference and query datasets are normalized
in the same manner.

Variable gene selection and scaling. We subset by the top g variable genes by the
variance stabilizing transform (VST) method (as provided in Seurat!®), which fits a
line to the log(variance) and log(mean) relationship using local polynomial
regression, then standardizes the features by observed mean and expected variance,
calculating gene variance on the standardized values, which is re-implemented as a
standalone function at https://github.com/immunogenomics/singlecellmethods.
The data is scaled such that the expression of each gene has a mean expression of 0
and variance of 1 across all cells.

Principal component analysis (PCA). We perform dimensionality reduction on the
scaled gene expression G,, using principal component analysis (PCA). PCA pro-
jects the data a low-dimensional, orthonormal embedding that retains most of the
variation of gene expression in the dataset. Singular value decomposition (SVD) is
a matrix factorization method that can calculate the PCs for a dataset. Here, we use
SVD (“irlba” R package®) to perform PCA. SVD states that matrix G, with
dimensions gx n can be factorized as:

G, = Uzv’ @)

In Eq. (7), vt = Z, (dimensions d x n) represents the embedding of reference
cells in PC space, after truncating the matrix on the first d (by default, d = 20) PCs.
The gene loadings (U € R¢*?) are saved. Note that an alternative embedding, such
as canonical correlation analysis (CCA) may be used in place of PCA, as long as the
gene loadings are saved.

Harmony integration. The PCA embedding (Z,) is then input to Harmony for
dataset integration. By default, Symphony uses the default parameters for the
cluster diversity enforcement (6 = 2), the entropy regularization hyperparameter
for soft k-means (s = 0.1), and the number of clusters k = min(lOO,%). We save
the L2-normalized cluster centroid locations Y, to the reference object since
query mapping employs a cosine distance metric. If the reference has a single-level
batch structure, no integration is performed, and the clusters are defined using soft
k-means.

Query mapping implementation details

Normalization and scaling. The gene expression for query cells are assumed to be
library size normalized in the same manner that was used to normalize the
reference cells, e.g., log(CP10K + 1). During scaling, the query data is subset by the
same variable genes from the reference datasets, and query gene expression is
scaled by the reference gene means and standard deviations. Any genes present in
the query but not the reference are ignored, and any genes present in the reference
but not the query have scaled expression set to 0.

Clustering step uses cosine distance. As in Harmony, in practice we use cosine
distance rather than Euclidean distance in the clustering step. For the computation
of the distance term, we L2-normalize the columns (cells) of Z and columns
(centroids) of Yy, such that the squared values sum to 1 across each column. Let the
terms Zg_.,q and Yo g represent the L2-normalized locations of query cell i and
the reference centroid for cluster k in PC space, respectively. We compute the
cosine distance between the cells and centroids. Since all Z ., and Y,y g each
have unity norm, the squared Euclidean distance [|Zg_coq. j — Yeos. i 12 is
equivalent to the cosine distance

2(1 - cos(Ycos[,kpZq_m[_’i])> =2(1—- Y;ros[k_]Zq_cos[yi]). Therefore, the objective

function for query assignment to centroids becomes:

nlg.i‘p ZIE 2R (1 — YcTos[k,] Zy cos-i) T Ry 10g(Rypep)

®
LYY Ry >0, Y, “Ry g =1
k

We can solve the optimization problem using an expectation-maximization
framework. Following the same strategy as Korsunsky et al.!7, we calculate R, the
optimal probabilistic assignments for each query cell i across each of the k reference
clusters. In Eq. (9), we can interpret Ry ;; as the probability that query cell i
belongs to cluster k. The denominator term simply ensures that for any given cell i,
the probabilities across all k clusters sum to one. By default, s = 0.1.

exp <_ % 1- Ygos[k.o]zq,cos[o,i] ))
Zk: €xp (‘ % a- Yzos[k,.]zq,cos[.,i]))

Query label prediction and prediction confidence score. Once query cells are
embedded in the same low-dimensional feature space as the reference, reference
labels can be transferred to the query using any downstream model (e.g., k-NN,
SVM, logistic regression) using the harmonized PCs as input. See the analysis of

(©)

Ryap =

benchmarking against automatic cell type classifiers for examples of using different
downstream inference methods with Symphony.

For most analyses presented, we use a simple and intuitive k-NN classifier (as
implemented in the “class” R package), which uses majority vote with ties broken
randomly. We provide a convenient wrapper function in the Symphony package to
do this (knnPredict), which optionally returns the prediction confidence,
measuring the proportion of reference neighbors contributing to the winning vote.
For k-NN prediction, we would recommend that users alter the k parameter so that
it is ideally no larger than the number of cells in the rarest cell type of the reference.
For example, if the reference contains only 10 cells of a rare cell type, then we
recommend the user set k no higher than 10, to ensure that rare cell types in the
reference have the chance of being predicted given a majority vote k-NN classifier.

Mapping confidence metrics. Symphony offers two scores that measure the
confidence in query mapping and helps to identify query cell states missing in the
reference. We recommend that users try both metrics and further investigate any
query cells/clusters that appear to map poorly.

Background: Mahalanobis distance. Mahalanobis distance is a multivariate metric
that measures the distance from a point to a distribution. It can be thought of as
analogous to the univariate Z-score. We use Mahalanobis distance rather than
Euclidean distance since Euclidean distance assumes uncorrelated features, whereas
Mabhalanobis distance accounts for potentially correlated features. PCA technically
returns uncorrelated variables (which would have a covariance matrix containing
zeros in all non-diagonal positions); however, when considering the distribution of
cells surrounding each soft-cluster individually (rather than all cells altogether), the
covariance matrices have non-zero values. Mahalanobis distance (D) from a point x
to a distribution with mean p and covariance matrix X in d-dimensional space is
defined as:

DP=(x—p'zx—p (10)

Per-cell mapping metric. The per-cell mapping metric measures the weighted
Mahalanobis distance between each query cell and the distribution of reference
cells they map nearest to, weighted by soft-cluster membership. In Eq. (9), x is the
query cell position (d-dimensional vector), and p and X are the weighted mean ()
and covariance matrix (Z) for each reference Harmony soft-cluster centroid in pre-
Harmonized PC space, weighted according to the reference cells belonging to that
cluster (R,). For each query cell, we calculate its Mahalanobis distance (D) to each
reference centroid then take the weighted average across all centroids the query cell
belongs to (defined using R,). As the metric is a distance measure, it ranges from 0
to infinity. In practice, we have noticed that cell states well-represented in the
reference tend to have values <10.

Per-cluster mapping metric. The per-cluster mapping metric takes in a user-defined
set of query cluster labels, e.g., putative cell types from running a de novo PCA
pipeline on the query followed by graph-based clustering. User-defined clusters are
likely to represent unique cell types within the query data. The intuition behind this
metric is that if a query cell type is well-represented by the reference PC structure,
then it should map closely to a reference centroid. We first project the query into
reference pre-Harmony PCs, then calculate the Mahalanobis distance between the
query cluster and its nearest reference centroid, where the covariance is defined
using the query cluster in reference PC space. All cells in a given cluster receive the
same score. By aggregating signal using multiple query cells per cluster rather than
each cell individually, this metric potentially offers greater discriminatory ability
than the per-cell metric. A disadvantage of the metric is that it is sometimes
difficult to anticipate what the covariance of the query will be upon projection into
reference PCs. Additionally, if a query cluster has very few cells, the estimation of
its covariance matrix becomes numerically unstable; in practice, we return NAs for
clusters smaller than 2d, where d is the dimensionality of the embedding.

Analysis of 10x PBMCs

Preprocessing scRNA-seq data. The three 10x PBMCs datasets were previously
preprocessed by our group as part of the Harmony publication. We used the same
log(CP10K + 1) normalized expression data, filtered as described in Korsunsky
et al.l”. The datasets consist of PBMCs sequenced using three technologies: 3'v1
(n = 4809 cells), 3’v2 (8380 cells), and 5 (7697 cells).

Symphony mapping experiments. To construct each of three references for sub-
sequent mapping, we aggregated two reference datasets into a single normalized
expression matrix and identified the top 1000 reference variable genes across each
technology batch (then pooled them) using the variance stabilizing transformation
(VST) procedure!®. We ran Harmony on the top 20 PCs, harmonizing over
“technology” with default parameters. For Symphony mapping, we specified query
“technology” covariate.

Constructing gold standard embedding. To construct the gold standard de novo
Harmony embedding, we concatenated all three datasets together into a single
expression matrix, subset by the top 1000 variable genes calculated within each of
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three batches in the dataset then pooled, and ran Harmony integration on the top
20 PCs, harmonizing over “technology” with default parameters.

Assigning ground truth cell types. We clustered the cells in the gold standard
embedding using the Louvain algorithm as implemented in the single-
cellmethods::buildSNN_fromFeatures function and Seurat::RunModular-
ityClustering function!$. For PBMCs, we used nn_k = 5 (to capture rare HSCs),
nn_eps = 0.5, and resolution = 0.8. We labeled clusters with ground truth cell types
according to expression of canonical lineage marker genes (Supplementary

Table 2). PBMCs were assigned across 9 types: T (CD4: CD3D, IL7R, CD4; CD8:
CD3D, CD8A), NK (GNLY), B (MS4A1), Monocytes (CD14: CD14, LYZ; CD16:
FCGR3A, MS4A7), DCs (FCER1A), Megakaryocytes (PPBP), and HSCs (CD59).
Clusters were labeled if the AUC (calculated using presto®) for the corresponding
lineage marker was >0.7. For clusters that did not express specific lineage markers
or were ambiguous between multiple lineages, we manually assigned a cell type
based on the top differentially expressed genes (Supplementary Table 3) and
comparing to the cluster annotation from Korsunsky et al. (2019). PBMCs cluster
14 was identified as low-quality cells (high in mitochondrial genes). We removed
all cells in this cluster (n =315) from further analyses, leaving 20,571 cells total.
The final ground truth labels were used in downstream analyses and cell type
classification accuracy evaluation.

Evaluation of mixing and cell type classification accuracy. To compare dataset
mixing between de novo integration and mapping, we calculated Local Inverse
Simpson Index (LISI) using the compute_lisi function from https://github.com/
immunogenomics/LISI with default parameters (perplexity = 30). Perplexity
represents the effective number of each cell’s neighbors. For each mapping
experiment, we calculated dataset LISI on all cells, then subset the results for query
cell neighborhoods only to measure the effective number of datasets in the local
neighborhood of each query cell.

We predicted query cell types by transferring reference cell type annotations using

the knn function in the “class” R package (k=5). We calculated overall accuracy
across all query cells and cell type F1-scores (the harmonic mean of precision and
recall, ranging from 0-1). Precision = TP/(TP+FP), recall = TP/(TP + FN),
F1 = (2*precision*recall)/(precision+recall). Cell type F1 was the metric Abdelaal
et al. used to benchmark automated cell type classifiers®>. We used their provided
evaluate.R script (https://github.com/tabdelaal/scRNAseq_Benchmark/blob/master/
evaluate.R) to calculate confusion matrices and F1-scores by cell type.

Quantifying local similarity between two embeddings. k-NN-correlation (k-NN-corr)
is a new metric that quantifies how well a given alternative embedding preserves the
local neighborhood structure with respect to a gold standard embedding. Anchoring on
each query cell, we calculate (1) the pairwise distances to its k nearest reference
neighbors in the gold standard embedding and (2) the distances between the same
query-reference neighbor pairs in an alternate embedding (Methods), then calculate the
Spearman (rank-based) correlation between (1) and (2). For each query cell, we obtain a
single k-NN-corr value capturing how well the relative distances to its k nearest
reference neighbors are preserved. Note that k-NN-corr is asymmetric with respect to
which embedding is selected as the gold standard and which is selected as the alter-
native because the nearest neighbor pairs are fixed based on how they were defined in
the gold standard. The distribution of k-NN-corr scores for all query cells can measure
the embedding quality, where higher k-NN-corr indicates greater recapitulation of the
gold standard. Lower values for k assess more local neighborhoods, whereas higher k
assesses more global structure.

We calculated k-NN-corr between the gold standard Harmony embedding and
two alternative embeddings: (1) the full Symphony mapping algorithm (projection,
clustering, and correction) and (2) PCA-projection only as a comparison to a
batch-naive mapping. PCA-projection refers to the first step of Symphony
mapping, where query cells are projected from gene expression to pre-harmonized
PC space: Z, = UTG,.

Benchmarking against automatic cell type classifiers. We downloaded the
PbmcBench benchmarking dataset used by a recent comparison of automatic cell
type identification methods3>3°. For each of 48 train-test experiments described in
Abdelaal et al.35 (see below for details), we used the same evaluation metrics
(median cell type Fl-score) to evaluate Symphony in comparison to the 22 other
classifiers. We obtained the numerical F1-score results for the other classifiers for
all 48 experiments directly from the authors in order to determine Symphony’s
place within the rank ordering of classifier performance.

During reference building, we explored two different gene selection methods:
(1) unsupervised (top 2000 variable genes) and (2) supervised based on identifying
the top 20 differentially expressed (DE) genes per cell type. Option (2) was included
to give Symphony the same information as prior-knowledge classifiers (e.g., SCINA
with 20 marker genes per cell type). We used the “presto” package®> for DE
analysis. No integration was performed because the reference had a single-level
batch structure (clusters were simply assigned using soft k-means). Onto each of
seven references (each representing one protocol for donor pbmcl), we mapped
either a second protocol for donor pbmcl (six experiments) or the same protocol
for donor pbmc2 (six experiment). Given the resulting Symphony joint feature
embeddings, we used three downstream classifiers to predict query cell types: 5-

NN, SVM with a radial kernel, and multinomial logistic regression with ridge
(“glmnet” package in R)%. We note that other methods in the original benchmark
were permitted to have a “rejection option” (leave uncertain cells as “unclassified”
and not included in F1-score calculation). Hence, we also added a version for each
of the two Symphony 5-NN versions that only assigned a label if the cell had >0.6
prediction confidence (>4 out of 5 neighbors with the winning vote). A total of 8
Symphony-based classifiers were tested (2 gene selection methods * 3 downstream
classifiers 4 2 rejection option versions).

Pancreas benchmark

Constructing the pancreas query with mouse and human cells. The pancreas query
dataset (Baron et al.%6; inDrop, n = 8569 human, 1886 mouse cells) along with
author-defined cell type labels were downloaded from https://hemberg-
lab.github.io/scRNA.seq.datasets/human/pancreas/. In order to combine the
human and mouse matrices into a single aggregated query, we “humanized” the
mouse expression matrix by mapping mouse genes to their orthologous human
genes. This mapping was computed using the “biomaRt” R package®’, mapping
“mgi_symbol” from the “mmusculus_gene_ensembl” database to “hgnc_symbol”
from the “hsapien_gene_ensembl” database. We added additional ortholog pairs
from HomoloGene (https://ftp.ncbi.nih.gov/pub/HomoloGene/build37.2/
homologene.data) to obtain a total of 22,578 human to mouse gene ortholog pairs.
We represented this map as a matrix, with mouse genes as rows, human genes as
columns, and values in {0, 1} assigned to denote whether a mouse gene maps to a
human gene. We then normalized the matrix to have each column sum to one,
effectively creating a count-preserving probabilistic map from 4 mouse to H
human genes M € R”*", Mapping from mouse to human genes is then performed
with matrix multiplication: E .0 = ME_ (. Note that while the mouse gene
expression matrix E, ., contains only integers (Epouee € Z™*"), the many-to-
many mapping means that the mapped human gene expression matrix Ey ... may
contain non-integers (., € R7*Y). For any human orthologs that were
missing in the mouse expression data, we filled in the expression with zeroes. We
then log(CP10K + 1) normalized the query cells.

Preprocessing reference scRNA-seq data. The pancreas reference datasets were each
sequenced with a different technology: Fluidigm C1 (n =638 cells), CEL-seq (946
cells), CEL-seq2 (2238 cells), Smart-seq2 (2355 cells). We obtained the
log(CP10K + 1) normalized data from the Harmony publication!”. The pancreas
cell type labels were obtained from Korsunsky et al.l”, which assigned cells across 9
types within each dataset individually according to cluster-specific expression of
marker genes: alpha (GCG), beta (MAFA), gamma (PPY), delta (SST), acinar
(PRSS1), ductal (KRT19), endothelial (CDH5), stellate (COL1A2), and immune
(PTPRC). We removed 290 cells that were left unassigned as part of ambiguous or
outlier clusters during within-dataset annotation, leaving 5887 reference cells.
We benchmarked three reference mapping methods as follows:

Symphony mapping onto a Harmony reference. We calculated the top 1000 variable
genes within each of the four reference dataset separately using VST then pooled
them (total 2,236 variable genes) for PCA. For reference integration, we ran
Harmony on the top 20 PCs, harmonizing over “donor” (theta =2) and “tech-
nology” (theta = 4), with tau = 5. For Symphony mapping, we specified query
“donor”, “species”, and “technology” covariates.

As a comparison with de novo integration, we ran Harmony integration on all
five datasets together. We pooled the top 1000 variable genes within each dataset
(total 2650 genes), calculated the top 20 PCs, and harmonized over “species”
(theta = 2), “donor” (theta =2), and “technology” (theta = 2), with tau = 5.

Seurat mapping onto a Seurat reference. We ran Seurat version 430 (Seurat_4.0.2) and
followed the steps from the author’s tutorial (https:/satijalab.org/seurat/v3.2/
integration.html) to integrate the reference datasets, given that the FindInte-
grationAnchors and IntegrateData functions for de novo integration are equivalent
between Seurat v3 and v4. We used the same 2,236 variable genes as above and 20 PCs.
We followed the tutorial (https://satijalab.org/seurat/v4.0/reference_mappinghtml) to
map each donor dataset from the query individually. We used the FindTransferAn-
chors function with reduction = “pcaproject” and MapQuery function with refer-
ence.reduction = “pca” (as the documentation recommends for unimodal analysis).

As a comparison with de novo integration, we ran Seurat integration
(FindIntegrationAnchors and IntegrateData) on all five datasets (integrating over
plate-based technologies and Baron donors as batches) with the same 2650 variable
genes as above and 20 PCs.

scArches mapping onto a trVAE reference. We ran scArches? version 0.3 with
trVAE?? using default parameters provided in the authors’ notebooks (https:/
github.com/theislab/scarches/tree/master/notebooks). For the pancreas analysis, we
only had access to normalized expression data and therefore ran scArches with
trVAE using the “mse” reconstruction loss function. We included query batch
information in the condition_key parameter.

As a comparison with de novo integration, we ran trVAE on all 5 datasets with
default parameters, specifying batch as “dataset” for the 4 plate-based datasets and
“donor” for the Baron et al. dataset.
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Evaluation metrics. We used the resulting joint (reference and query) cell
embedding to predict query cell types from reference cells using a 5-NN classifier
and calculated cell type prediction F1-scores, as described above. For Seurat, we
additionally compared another set of predicted labels using Seurat’s TransferData
function. Note that for the cell type prediction and cell type F1-score calculation,
we excluded query Schwann cells from the accuracy metrics because that cell type is
not present in the reference.

To assess degree of mixing, we calculated ref_query LISI and query_donors LISI
on query cell neighborhoods using the compute_lisi function as above. ref_query
LISI measures how well the reference and query datasets are mixed (max ref_query
LISI of 2), whereas query_donors LISI measures how well the individual donors
within the query dataset are mixed (max of 6).

To assess how well the query low-dimensional structure is preserved in the
mapped embedding, we developed a new metric called within-query k-NN-
correlation (wiq-kNN-corr). For each query batch (here, donor), we run a standard
PCA pipeline on the cells (using 20 dimensions and selecting 2000 variable genes
per batch using VST). Then, anchoring on each query cell, we calculate it’s (1)
distances to the k nearest neighbors in the query PCA embedding and (2) the
distances to those same k cells after reference mapping. Then, wiq-kNN-corr is the
Spearman correlation between (1) and (2), ranging between -1 and 1, where higher
values represent better retention of the sorted original neighbor ordering. The
calculation is similar to k-NN correlation described above, except instead of
measuring the sorted ordering of reference neighbors in a de novo integration
embedding, we measure the sorted ordering of query neighbors in the query PCA
embedding.

Fetal liver hematopoiesis trajectory inference example. We obtained post-fil-
tered, post-doublet removal data directly from the authors?” along with author-
defined cell type annotations for 113,063 cells (14 donors) sequenced with 10x 3’ end
bias (reference) and a separate 25,367 cells sequenced with 10x 5" end bias (query).
For building the harmonized reference from all reference (3) cells, we followed the
same variable gene selection procedures as the original authors, using the Seurat
variance/mean ratio (VMR) method with parameters min_expr = 0.0125, max_expr
=3, and min_dispersion = 0.625 (resulting in 1917 variable genes). We integrated the
reference with Harmony over “donor” (theta = 3). To map query (5’) cells against the
reference, we removed two donors (F2 and F5, n =3953) from the query based on
low library complexity (Supplementary Fig. 5b), leaving n = 21,414 cells from 5
donors. During mapping, we specified both “donor” and “technology” as covariates.
We predicted query cell types by transferring reference cell type annotations using the
knn function in the “class” R package (k = 30). We visualized the confusion matrix
for the query (5°)-to-reference (3’) experiment using the “ComplexHeatmap” R
package®®.

For the trajectory inference analysis, we obtained trajectory coordinates from
the force directed graph (FDG) embedding of all reference cells from the original
authors?’, forming a reference trajectory. We restricted the trajectory to immune
cell types only (excluding hepatocytes, fibroblasts, and endothelial). We then
mapped a subset of the query cells belonging to the MEM lineage (MEMPs,
megakaryocytes, mast cells, early-late erythroid; n = 5141) to the reference-defined
trajectory by averaging the FDG coordinates of the 10 reference immune cell
neighbors in the Symphony embedding.

Evaluating performance of Symphony mapping metrics

Simulating missing cell type scenarios in fetal liver hematopoiesis dataset. Using the
3’ fetal liver dataset described above (n = 113,063 cells), we held out one random
donor (F8, 16,945 cells) as the query and used the remaining 13 donors as the
reference dataset. We constructed 3 increasingly difficult scenarios where the
reference is missing cell types present in the query by artificially removing cell types
from the reference:

1. Removing all non-immune cell types: endothelial cells (n =321 cells),
fibroblasts (n = 361), hepatocytes (n = 306)

2. Removing all myeloid cells: Kupffer cells (n=6022 cells), Mono-Mac
(n=1035), Monocyte (n = 375), Monocyte precursor (n=44), DCI (n =
56), DC2 (n=292), VCAMI+ EI Macro. (n=>52), Neut-myeloid prog.
(n=91), DC precursor (n = 14), pDC precursor (n =9)

3. Removing Kupffer cells (n = 6022 cells)

For each of the three scenarios, we built a Symphony reference using the same
variable gene selection and reference building parameters as in the fetal liver
hematopoiesis example, then mapped the query containing all 27 cell types onto
the reference. We calculated both per-cell mapping and per-cluster mapping
metrics for the query cells. To plot ROC curves and calculate AUC values for each
metric, we used the “pROC” R package (roc and auc functions), using a binary label
of missing vs. present in the reference as the ground truth for prediction. Note that
for the per-cluster metric, the pDC precursor (n =9 cells), DC precursor (n = 14),
and Pre-pro B cell (n = 12) clusters were too small to calculate a per-cluster score
and were assigned a value of 0 for the per-cluster metric in all scenarios (unable to
be flagged as novel) for inclusion in AUC calculations.

Comparison of Symphony mapping metrics to Seurat mapping score. Using the 10x
PBMC:s dataset described above, we designated the 3’v2 and 5’ data as the reference

and held out the 3’v1 data as a query. For each of the major cell types (B, DC, HSC,
MK, Mono, NK, or T), we artificially removed all reference cells of that type and
built a Symphony reference with that type missing (total 7 references/scenarios).
We used the same reference building parameters as the original 10x PBMCs
analysis. We then mapped all query cells onto each reference, simulating seven
scenarios where the query contains a different novel unseen population, and cal-
culated Symphony per-cell and per-cluster mapping metrics for the query cells in
each scenario.

For each scenario, we also built a reference using Seurat (v4.0.2), integrating the
reference dataset with FindIntegrationAnchors with 20 dimensions and mapping
the query with FindTransferAnchors and MapQuery. We calculated query
mapping scores with the MappingScore function. The Seurat mapping score is
based on projecting the query into the reference space, then projecting back into
the query and finding cells whose local neighborhoods are most altered by the
transformation (see https://rdrr.io/cran/Seurat/man/MappingScore.html).

We generated ROC curves and calculated AUCs across all query cells, using a
binary label of missing vs. present in the reference as the ground truth for
prediction. For the Symphony per-cell metric and Seurat mapping score, each
query cell was assigned its own value for the mapping metric, whereas for the
Symphony per-cluster metric, all cells from the same cluster were assigned the
same value. The HSC cluster (n =21 cells) was too small to calculate a per-cluster
score and all HSCs were assigned a value of 0 for the per-cluster metric in all
scenarios (unable to be flagged as novel) for inclusion in AUC calculations. We
calculated AUCs for each metric in two ways: (1) considering each scenario
separately (threshold values independent across scenarios) and (2) aggregating cells
across all 7 scenarios together into a single AUC calculation.

Mapping tumor cells against healthy reference. We mapped a renal cell car-
cinoma dataset onto a reference of healthy fetal kidney cells (datasets in Supple-
mentary Table 1).

Building the healthy kidney reference. We found that the reference dataset gene
names were previously assigned by the original authors using Gencode v24,
whereas the query dataset gene names were assigned by the original authors using
Gencode v30 liftover37 (query dataset.gtf file was provided by Bi et al.). Genco-
de.gtf files for versions 4-38 were downloaded from: http://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human. For many genes, the names were mismatched
between the reference and query Gencode versions (different synonyms for the
same gene). Therefore, to sync the two datasets, we used the Ensembl IDs of the
reference genes to convert them to Gencode v30 gene names. We used the top 2000
variable genes across all cells to build the reference with 15 PCs, integrating over
“Experiment” with theta = 0.5. Note that this reference building procedure is dif-
ferent from the original study®$, which did not use Harmony. For improved
readability, we collapsed cell type labels for immune and stromal cells (e.g.,
“Proliferating monocyte” and “Monocyte” were collapsed into “Monocyte”).

Mapping the renal cell carcinoma dataset. We mapped the query dataset
(n=34,326 cells from eight donors) starting from expression using default
Symphony parameters, correcting for query “donor_id”. As some gene names
remained discordant between reference and query datasets, the mapping was based
on the 1723 (out of 2000) reference variable genes shared. We used 10-NN to
transfer reference cell type labels to the query. We calculated the per-cell mapping
confidence (excluding the “Misc/Undetermined” cells, n = 278).

Extending Symphony to scATAC-seq. scATAC-seq is different from scRNA-seq
in that open chromatin peaks are typically defined in a dataset-specific manner
(i.e., rather than a pre-specified list of genes that apply to all datasets). Hence,
this proof-of-concept analysis was run on peaks called on all cells as defined by
the benchmarking paper by Chen et al.”2, obtained from the Pinello Lab
GitHub: https://github.com/pinellolab/scATAC-benchmarking/blob/master/
Real_Data/Buenrostro_2018/input/combined.sorted.merged.bed. In this data-
set, peaks were called on each cell type aggregated separately then merged. The
full peaks by cells matrix was calculated using chromVAR’s getCounts function
as demonstrated in their notebook (https://github.com/pinellolab/scATAC-
benchmarking/blob/master/Real_Data/Buenrostro_2018/run_methods/
chromVAR/chromVAR_buenrostro2018_kmers.ipynb), and subsequently
binarized. The cell type information was also gathered from the Pinello Lab
GitHub (https://github.com/pinellolab/scAT AC-benchmarking/blob/master/
Real_Data/Buenrostro_2018/input/metadata.tsv) while the donor information
was inferred from the cell name.

We defined the query cells (n=298) as those that belong to donor BM1214
while the remaining cells (n = 1736) were assigned as reference. BM1214 had cells
corresponding to CMPs, GMPs, and pDCs, whose cell types all had cells from other
donors also in the reference set. Since scATAC-seq is sparse and zero-inflated, the
mean-scaling approach used for genes was changed to TF-IDF normalization on
the binarized peaks by cells matrices. Seurat’s TF-IDF function was modified to
allow for an IDF vector as input and outputted the TF matrix, IDF vector, and
normalized peaks by cells matrix. Following the TF-IDF implementation in Stuart
& Butler et al.!8, we computed log(TFxIDF). The inverse-document frequency
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(IDF) vector was calculated on the reference cells only and then used in the query
cell normalization to get all the cells in the same space before mapping. With only
this change to the Symphony methods, scATAC-seq query cells were mapped to a
comparable reference. Feature selection, SVD, and Harmony were done as in the
10x PBMC analysis. Predicted query cell types were calculated using 5-NN. For
plotting, we used the same cell type colors primarily defined from the Supplemental
Data Table 1 of the original Buenrostro et al. (2018) paper with GMPs changed to a
darker orange to better distinguish them visually from the CMPs and the
“unknown” cells changed from gray to black, allowing gray to be used as the null
color to better emphasize the other cell type colors.

Memory T-cell surface protein inference example. We used a memory T-cell
CITE-seq dataset collected from a tuberculosis disease progression cohort of 259
individuals of admixed Peruvian ancestry*(. The dataset includes expression of the
whole-transcriptome (33,538 genes) and 30 surface protein markers from 500,089
memory T cells isolated from PBMCs. Including technical replicates, 271 samples
were processed across 46 batches.

To assess protein prediction accuracy using Symphony embeddings, we
randomly selected 217 samples (411,004 cells), normalized the expression of each
gene (log2(CP10K+1)) and built a Symphony reference based on mRNA
expression, correcting for donor and batch. The held-out 54 samples (n = 89,085
cells) comprised the query that we mapped onto the reference. We predicted the
expression of each of the 30 surface proteins in each of the query cells by averaging
the protein’s expression across the cell’s 50 nearest reference neighbors. Nearest
neighbors were defined based on Euclidean distance in the batch-corrected low-
dimensional embedding. As a ground truth for each protein in each query cell, we
computed a smoothed estimate of the cells’ measured protein expression by
averaging the protein’s expression across the cell’s 50 nearest neighbors in the
batch-corrected complete PCA embedding of all 259 donors. We did not use the
cells’ raw measured protein expression due to dropout. We computed the Pearson
correlation coefficient between our predicted expression and the ground truth
expression across all cells per donor for each marker.

To assess protein prediction accuracy based on mapping to a joint mRNA and
protein-based Symphony reference, we first built an integrated reference by using
canonical correlation analysis (CCA) to project cells into a low-dimensional
embedding maximizing correlation between mRNA and protein features. We
randomly selected 217 samples (395,373 cells) to comprise this reference, and
normalized the expression of each gene (log2(CP10K + 1)), selected the top 2865
most variable genes, and scaled (mean = 0, variance = 1) all mRNA and protein
features. We computed 20 canonical variates (CVs) with the cc function in the
“CCA” R package® and corrected the mRNA CVs for donor and batch effects with
Harmony. Then, we used Symphony to construct a reference based on the batch-
corrected CVs, gene loadings on each CV, and mean and standard deviation used
to scale each gene prior to CCA. The held-out 54 samples (n = 104,716 cells)
comprised the query that we mapped onto the reference. As described above, we
predicted the expression of each of the 30 surface proteins in each of the query cells
based on the cell’s 5, 10, or 50 nearest neighbors in the reference, estimated the
smoothed ground truth expression of each protein in each query cell (now based
on the batch-corrected CCA embedding of all 259 donors) and computed the per-
donor Pearson correlation coefficient for each protein marker.

Visualization. For visualizing the embeddings using UMAP? (and included as the
default in Symphony), we used the “uwot” R package with the following para-
meters: n_neighbors = 30, learning_rate = 0.5, init = “laplacian”, metric =
cosine”, and min_dist =0.1 or 0.3. For each Symphony reference, we saved the
uwot model at the time of UMAP using the uwot::save_uwot function and saved
the path to the model file as part of the Symphony reference object. Saving the
reference UMAP model allows for the fast projection of new query cells into
reference UMAP space from the query embedding from Symphony mapping using
the uwot:transform function.

For the pancreas benchmarking, we computed a de novo UMAP embedding on
the joint reference and query embedding because a UMAP projection can
potentially obscure differences between the projected data and dataset used to
construct the UMAP model. For general purposes, we recommend UMAP
projection when the reference cell UMAP coordinates are desired to remain stable.

To distinguish the reference plots from query plots, we visually present the
reference embedding as a contour density instead of individual cells. The density
plots were generated using “ggplot2” function stat_density_2d with
geom = “polygon” and contour_var = “ndensity”. We provide a custom function
to generate these plots as part of the Symphony package (plotReference function).

Runtime scalability analysis. We downsampled a large memory T-cell dataset*0
to create benchmark reference datasets with 20,000, 50,000, 100,000, 250,000, and
500,000 cells. For each, we built a Symphony reference (20 PCs, 100 centroids)
integrating over “donor” and mapped three different-sized queries: 1000, 10,000,
and 100,000 cells. To isolate the separate effects of number of query cells and
number of query batches on mapping time, we mapped against the 50,000-cell
reference: (1) varying the number of query cells (from 1000 to 10,000 cells) while

keeping the number of donors constant and (2) varying the number of query
donors (6 to 120 donors) while keeping the number of cells constant (randomly
sampling 10,000 cells). We also performed separate experiments varying the
number of reference centroids (25 to 400) and number of dimensions (10 to 320
PCs) while keeping all other parameters constant. We ran all jobs on Linux servers
allotted 4 cores and 64 GB of memory (Intel Xeon E5-2690 v.3 processors) and
used the system.time R function to measure elapsed time.

To compare runtime against Seurat and scArches, we used the same different-
sized benchmark datasets and ran reference building and mapping or the
corresponding de novo integration method (anchor-based integration for Seurat or
trVAE for scArches). All jobs were allocated a maximum of 120 GB of memory and
24h of runtime (and automatically terminated if memory or runtime were
exceeded). We measured reference building and mapping runtime and
corresponding de novo integration runtime for each method as elapsed time
starting from gene expression. All jobs were run on a Linux server: Symphony and
Seurat were allotted 4 CPU cores each, whereas scArches/trVAE was allotted 48
CPU cores to speed up runtime as it is a neural-net-based method.

Constructing and mapping to multimillion cell atlas. We obtained the AnnData
file for the dataset (GSE158055_covid19.h5ad) from https://drive.google.com/file/
d/1TXDJqOvFkJxbcm2u2-_bM5RBATOqv56w/view. The link to the AnnData
object was obtained from the following GitHub issue (response from user saketkc):
https://github.com/satijalab/seurat/issues/4030. Owing to a limitation on the 32-bit
sparse matrices in R (the maximum number of non-zero values in a sparse matrix
currently cannot exceed >23! — 1 for the “Matrix” R package), the gene expression
matrix (1,462,702 cells by 27,943 genes) was preprocessed using the Python
“scanpy” package. We log(CP10k + 1) normalized the data and subset to 1301
variable genes (list of variable genes was obtained from contacting the original
authors). The remainder of the analysis was performed in R (v4.0). We held out a
random 5% of samples (14 samples, 72,781 cells) as the query and built a
Symphony reference using the other 95% of samples (270 samples, 1,389,921 cells),
integrating over “Sample.name” and “dataset” with theta = 2.5 and 1.5, respec-
tively, following the original publication. Reference building and mapping proce-
dures were run on a Linux cluster with 4 cores and timed using the system.time
function in R. UMAP steps were excluded from runtime as these are not inherent
to the Symphony algorithm.

Building Tabula Muris Senis (FACS) Symphony reference. As a comprehensive
mouse atlas, we built a Symphony reference using the Tabula Muris Senis dataset
(not directly featured in the paper but included as a pre-built reference on Zenodo).
We downloaded the FACS.h5ad file provided by the original authors on Figshare
(see Supplementary Table 1). We extracted the expression matrix (counts),
metadata, and highly variable genes using Python then read the data into R. For
reference building, we used log(CP10k + 1) normalization, subset by the same
variable genes as the original authors, then ran PCA and Harmony with 50
dimensions, nclust = 300, integrating over “mouse.id” with theta = 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Datasets for all analyses were obtained from publicly available sources, for which the
specific links are listed in Supplementary Table 1. Additionally, we provide a
compendium of 8 pre-built Symphony references available for download on Zenodo (see
Table 1 for links). The 10x PBMCs data matrices were obtained from Korsunsky et al.l7:
https://github.com/immunogenomics/harmony2019/tree/master/data/figure4; original
files from 10x Genomics: https://support.10xgenomics.com/single-cell-gene-expression/
datasets. The pancreas reference data matrices were obtained from Korsunsky et al.l”:
https://github.com/immunogenomics/harmony2019/tree/master/data/figure5; original
data is located on GEO (GSE81076%, GSE85241%5, GSE86469*%) and EMBL-EBI (E-
MTAB-506142). The human and mouse pancreas query data (Baron et al., 2016)* was
downloaded from https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas.
The fetal liver hematopoiesis data from Popescu et al. (2019) is located on EMBL-EBI (E-
MTAB-740747), and post-doublet removal data was kindly provided by the authors. The
PbmcBench data were obtained from the Zenodo repository for Abdelaal et al.3: https:/
zenodo.org/record/3357167#.YSL8pINKhTY. The memory T-cell CITE-seq dataset from
Nathan et al.0 is available on GEO (GSE158769). The healthy fetal kidney data (Stewart
et al,, 2019)*8 was obtained from https://www.kidneycellatlas.org/. The renal cell
carcinoma data (Bi et al.)*’ was obtained from the Broad Institute Single-Cell Portal
(SCP1288). The 1.46 million cell COVID-19 dataset (Ren et al.)*! is available on GEO
(GSE158055), and.h5ad file was obtained from https://drive.google.com/file/d/
1TXDJqOvFk]Jxbcm2u2-_bM5RBATOqv56w/view. The scATAC-seq hematopoiesis
dataset (Buenrostro et al.)>! was downloaded from the Pinello Lab GitHub: https://
github.com/pinellolab/scATAC-benchmarking/blob/master/Real_Data/
Buenrostro_2018/input/combined.sorted.merged.bed. Gencode.gtf files for versions 4-38
(used for determining gene name synonyms in cancer analysis) were downloaded from:
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human.
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Code availability

We provide an efficient implementation of Symphony at https://github.com/
immunogenomics/symphony along with documentation, tutorials, and pre-built
references. Symphony is also available for download as an R package on CRAN: https://
cran.r-project.org/web/packages/symphony/index.html. The version of Symphony code
used for the study is CRAN version 0.1.0. Jupyter notebooks and scripts to reproduce
figures for the analyses in the manuscript are available at https://github.com/
immunogenomics/symphony_reproducibility.
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