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Abstract

Background: Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a
single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplantation (HCT).
Our ability to understand how certain organisms attain intestinal domination over others has been restricted in part
by current metagenomic sequencing technologies that are typically unable to reconstruct complete genomes for
individual organisms present within a sequenced microbial community. We recently developed a metagenomic
read cloud sequencing and assembly approach that generates improved draft genomes for individual organisms
compared to conventional short-read sequencing and assembly methods. Herein, we applied metagenomic read
cloud sequencing to four stool samples collected longitudinally from an HCT patient preceding treatment and over
the course of heavy antibiotic exposure.

Results: Characterization of microbiome composition by taxonomic classification of reads reveals that that upon
antibiotic exposure, the subject’s gut microbiome experienced a marked decrease in diversity and became
dominated by Escherichia coli. While diversity is restored at the final time point, this occurs without recovery of the
original species and strain-level composition. Draft genomes for individual organisms within each sample were
generated using both read cloud and conventional assembly. Read clouds were found to improve the
completeness and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds
enabled the placement of antibiotic resistance genes present in multiple copies both within a single draft genome
and across multiple organisms. The occurrence of resistance genes associates with the timing of antibiotics
administered to the patient, and comparative genomic analysis of the various intestinal E. coli strains across time
points as well as the bloodstream isolate showed that the subject’s E. coli bloodstream infection likely originated
from the intestine. The E. coli genome from the initial pre-transplant stool sample harbors 46 known antimicrobial
resistance genes, while all other species from the pre-transplant sample each contain at most 5 genes, consistent
with a model of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E. coli.
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Conclusion: This study demonstrates the application and utility of metagenomic read cloud sequencing and
assembly to study the underlying strain-level genomic factors influencing gut microbiome dynamics under extreme
selective pressures in the clinical context of HCT.

Keywords: Read cloud sequencing, Metagenomics, Microbiome, Antibiotic resistance, Hematopoietic cell
transplantation

Background
Metagenomics involves the sequencing of a whole com-
munity of microorganisms directly from an environmental
sample, such as soil or the human intestinal tract, often
without prior knowledge of which species are present
within the sample. In silico reconstruction of complete
and contiguous genomes for individual organisms within
a sequenced population remains a major challenge in the
field of metagenomics. This is a challenging problem
when using conventional shotgun short-read sequencing
and assembly methods because short reads alone may not
be able to determine the correct positions of DNA se-
quences that are both longer than the sequenced DNA
fragment length (usually 50–300 base pairs) and present
in multiple copies at different locations in the metagen-
ome. The presence of such repeated regions (e.g. insertion
sequences or the bacterial 16S rRNA gene) often result in
fragmented assemblies where multiple instances of the re-
peated sequence are collapsed into a single contig instead
of correctly placed in between unique flanking regions in
multiple genomic locations.
Read cloud sequencing is a relatively new technique that

was initially used in the context of human genomics to
phase haplotypes [1]. This method has also been termed
“linked-read sequencing.” The main difference between
read cloud and conventional short-read sequencing is that
read cloud sequencing augments the library preparation
stage to ultimately generate “read clouds,” which are short-
read sequences annotated with long-range information in
the form of molecular barcodes. This is achieved by physic-
ally partitioning long DNA fragments into nanoliter-scale
droplets and subsequently tagging all sequencing reads ori-
ginating from a long fragment with a droplet-specific mo-
lecular barcode. Read cloud sequencing offers a favorable
combination of long-range information, high base call ac-
curacy, high throughput, and low input DNA mass require-
ments [1]. The 10x Genomics Chromium platform is a
commercially available read cloud library preparation sys-
tem that automates the pipetting steps necessary to gener-
ate the molecular barcodes. Recently, we developed an
approach to adapt read cloud sequencing for metagenomic
applications. The resultant barcoded data is deconvolved
and genome draft assembly is achieved using a combination
of existing standard genome assemblers as well as a custom

assembly tool called Athena [2]. We have recently applied
the approach to sequence ocean sediment samples and the
healthy human microbiome, for which it was able to gener-
ate contiguous draft genomes for individual organisms from
bacterial mixtures [2].
In this study, we investigate a clinical application of

metagenomic read cloud sequencing in the context of
hematopoietic cell transplantation (HCT), which is a
complex medical procedure used in the treatment of
hematologic disorders such as leukemia and lymphoma.
During HCT, patients initially undergo intensive treat-
ment with chemotherapy and sometimes radiation ther-
apy; this ‘conditioning regimen’ serves to prepare
patients to receive a hematopoietic stem cell graft. Mul-
tipotent hematopoietic stem cells derived from bone
marrow, peripheral blood, or umbilical cord blood are
then infused into the patient to reconstitute all blood
cell lines. The procedure can be curative but comes with
high risk for complications, including infection and
graft-versus-host disease (GVHD), an inflammatory dis-
ease where donor immune cells attack the recipient’s
healthy tissue. Intestinal microbial dysbiosis preceding
and following HCT has been found to be associated with
an increased risk for developing bloodstream infections
[3]. Previous studies also show that decreased intestinal
diversity is associated with development of GVHD and
higher overall mortality in HCT [4]. Broad-spectrum an-
tibiotics and other drugs administered during the course
of HCT can greatly change the composition of the gut
microbiota. In some cases, such microbial dysbiosis leads
to domination of the intestine by a few or even a single
genus or species, increasing the likelihood of complica-
tions like bloodstream infections in these immunocom-
promised patients [3]. Intestinal domination may happen
because certain bacterial strains carry an advantage, such
as antibiotic resistance, that enables them to flourish
after other antibiotic-sensitive commensal microbes are
eliminated. While intestinal domination is relatively
common in this patient population, the process by which
it occurs is not well-understood.
Herein, we apply the metagenomic read cloud sequen-

cing approach to patient stool samples collected over
multiple time points pre- and post-HCT to elucidate
microbiome dynamics in response to extreme selective
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pressures during HCT. We find that antibiotic exposure
is associated with intestinal domination by Escherichia
coli in our study subject. Read cloud sequencing, but not
short read sequencing alone, was able to identify many
antibiotic resistance genes within the dominating strain
of E. coli. Thus, we postulate that the gut domination
observed was the consequence of enhanced fitness of
this organism in the presence of antibiotics.

Methods
Sample preparation and sequencing
As part of our original previously published investigation
of bloodstream infections in HCT recipients [5], we per-
formed a retrospective cohort study, approved by the
Stanford institutional review board under IRB protocol
#42053 (principal investigator: A.S.B.). Informed consent
for weekly stool sample collection on all Stanford HCT
patients was obtained under protocol #8903 (principal in-
vestigator: David Miklos). All fresh stool samples were
placed at 4 °C immediately upon collection, aliquoted into
2mL cryovial tubes within 24 h, and stored at − 80 °C.
One study subject undergoing HCT was unique in

having a simultaneous E.coli and Methicillin-resistant
Staphylococcus aureus (MRSA) bloodstream infection
[5]. Furthermore, this patient also had a total of five lon-
gitudinal stool samples (denoted A-E) in addition to the
E. coli isolate cultured from the bloodstream infection
available for sequencing. While MRSA was not found in
the patient’s stool sample, the E.coli bloodstream isolate
appeared indistinguishable from the same strain in the
intestine using short-read sequencing [5]. We chose to
further investigate this patient’s samples using read
cloud sequencing for even more precise longitudinal
strain-level analysis.
From the frozen stool samples, we isolated microbial

cells from stool debris by differential centrifugation fol-
lowing a previously described protocol [6]. 400mg of fro-
zen stool was vortexed with 1mL 0.9% saline solution for
30 s, then centrifuged at 3000 rpm (645 g) for 2 min. The
pellet containing stool debris was discarded, and the
supernatant was centrifuged at 10,000 rpm (7168 g) for 3
min to spin down bacterial cells. The saline supernatant
was discarded, and the differential centrifugation process
was repeated with 1mL of phosphate-buffered saline (pH
7.4) to acquire a purified microbial pellet.
For read cloud sequencing, we extracted high-molecular-

weight DNA from the purified microbial pellet using the
Gentra Puregene Yeast/Bacteria Kit following the manufac-
turer’s protocol with the following modifications to increase
DNA yield: increased lytic enzyme volume to 5.0 μL and in-
creased protein precipitation solution to 130 μL. For con-
ventional sequencing, we extracted DNA directly from
frozen stool using the Qiagen QIAamp DNA Stool Mini
Kit modified with an added step after addition of buffer

ASL in which the samples underwent seven alternating 30-
s cycles of beating with 1mm diameter zirconia beads in a
bead beater (Biospec Products) and chilling on ice. The ex-
tracted DNA was visualized by agarose gel electrophoresis,
and concentration estimations were performed for both
Qiagen and Puregene DNA using Qubit fluorometric quan-
titation. The concentration of DNA extracted for time
point B was too low to be used as input for read cloud se-
quencing; therefore, the read cloud sample for time point B
was excluded from downstream processing. For all other
time points, we removed small (< 10 kb) DNA fragments by
size selection prior to read cloud library preparation using a
BluePippin agarose electrophoresis instrument.
The size-selected high-molecular-weight DNA was used

as input for read cloud library preparation. We prepared
10x Chromium libraries using the Chromium instrument
and reagents from 10x Genomics (Pleasanton, CA). Add-
itionally, we prepared conventional Illumina Truseq libraries
for all five time points (A-E) as well as the bloodstream iso-
late according to the Illumina Truseq Nano protocol. We
quantified library fragment size using a Bioanalyzer 2100 in-
strument (Agilent Technologies). The four 10x Chromium
libraries were multiplexed and sequenced on one lane of
Illumina HiSeq 4000 using 2 × 150 bp paired-end reads
(11–16 Gb of sequence coverage per library). The Illumina
Truseq stool libraries were multiplexed and sequenced on
an Illumina HiSeq 4000 instrument using 2 × 101 bp reads
(4–5 Gb of sequence coverage per library).
The bloodstream bacterial isolate of E. coli was col-

lected and stored by the Stanford Health Care Clinical
Microbiology lab, as part of the previously published in-
vestigation of bloodstream infections in HCT recipients
[5]. We extracted isolate DNA from colonies grown in
small volume liquid culture following the manufacturer’s
protocol for the Gentra Puregene Yeast/Bacterial Kit and
sequenced the Illumina Nextera XT library on an Illu-
mina HiSeq 4000.

Quality control of reads
The samples were demultiplexed using Illumina’s
bcl2fastq v2.19. For the read cloud libraries, we extracted
the 16 bp 10x barcode from each read using the Long
Ranger Basic pipeline (10x Genomics). Next, we per-
formed identical quality control and filtering procedures
for raw reads generated from all stool libraries (both read
cloud and conventional): read quality was assessed with
FastQC v0.11.4 [7] and quality trimming was performed
with cutadapt v1.8.1 using a minimum length of 60 (−m
60), minimum terminal Phred quality cutoff of 30 (−q 30,
30), and N-end trimming (−trim-n) [8].

Taxonomic classification of reads and diversity calculation
To measure the microbial composition of our short-read
sequencing samples, we used the Kraken2 taxonomic
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sequence classifier with default parameters [9] and a
comprehensive database containing all bacterial and ar-
chaeal genomes in Genbank assembled to “complete
genome” or “chromosome” quality as of October 2018.
Kraken2 classifies individual reads by mapping all k-mers
(k = 35) to the lowest common ancestor genome in the
database. Bracken [10] was then used to estimate species
abundance. The Shannon diversity index was calculated
for each sample at the species level using the R package
Vegan (version 2.5–4) [11]. Shannon diversity was calcu-
lated on samples rarefied to 7,360,000 paired-end reads,
the number in the lowest covered file.

Generation of organism draft genomes
We assembled the quality-controlled reads for both the
read cloud and conventional libraries using the short-read
assembler MEGAHIT v1.1.3 [12], which first builds a suc-
cinct de Bruijn graph from k-mers, then forms assembled
contigs by finding paths through the graph. We performed
no further assembly for the conventional samples (the
MEGAHIT contigs constituted the final contigs compris-
ing the draft genomes). For read cloud samples, we used
BWA v0.7.10 to perform sequence alignment of the raw
reads against the MEGAHIT contigs [13]. We then used
the Athena assembler to further assemble the MEGAHIT
seed contigs. Athena takes as input the barcoded reads
(FASTQ), the seed contigs (FASTA), and the alignment
file (BAM), and it returns contigs assembled with read
clouds (see [2] for full details of Athena).
Next, we clustered the individual contigs generated

from Athena into bins representing nearly complete or-
ganism genomes. Binning was achieved by using four
established metagenomic binning tools: MetaBAT2 [14],
MyCC [15], CONCOCT [16], and MaxBin 2.0 [17]. We
then used DAS Tool to integrate the results from the
various binning methods to yield a single set of non-
redundant bins with maximal coverage of single-copy
core genes [18]. We assigned a taxonomic classification
to each individual contig using Kraken2 [9]. We assigned
a taxonomic designation to an entire bin if greater than
60% of contigs in the bin shared the same Kraken2 iden-
tification. For each resulting bin, which represents an or-
ganism draft genome, we used QUAST to assess the size
and contiguity of the assembly [19]. We used CheckM
to calculate metrics of genome completeness (existence
of expected core genes) and contamination (duplication
of core genes expected to exist in single copy) for each
draft genome [20]. We used the circlize package in R
[21] to visualize and compare the assemblies and Prokka
[22] to predict the protein-coding genes in each contig.

Comparative genomic analysis
To quantify the similarity between the various E. coli strains
across time points (A, C, and D) and between the stool and

bloodstream isolate, we used the NUCmer script within
MUMmer v3.23 to perform pairwise alignment of the E.
coli draft genomes from each pair of samples [23]. We also
included the full genome for extraintestinal pathogenic E.
coli strain S88 (NCBI accession CU928161.2) in the analysis
as a comparison. For each pair of assembled draft genomes
of the various E. coli strains, we calculated the percent nu-
cleotide identity, number of single nucleotide polymor-
phisms (SNPs), and total number of aligned bases.
Additionally, we generated syntenic dotplots for each pair-
wise comparison using the mummerplot script with layout
option (−l), which reorders and orients the contigs to the
main diagonal of the plot for optimal viewing [23].
A reference-guided assembly method was used to

compare species present at multiple time points when
species were too lowly abundant to obtain unbiased bins.
For both conventional and read cloud sequencing, reads
were aligned against the NCBI reference genome for a
given species with BWA [13], mapped reads were ex-
tracted with SAMtools [24] and assembled with metaS-
PAdes [25]. Athena assembly was conducted on read
cloud data. Resulting contigs were filtered to a minimum
length of 500 bp, and pairs of time points were aligned
with MUMmer. Only alignments with > 100 kb 1–1
aligned sequence were reported.

Antibiotic resistance gene detection
We detected the presence of antibiotic resistance genes
within contigs generated from each sample by aligning
the predicted protein-coding genes against the Compre-
hensive Antibiotic Resistance Database (CARD), a cu-
rated database of genes known to be determinants of
antibiotic resistance [26]. The “protein homolog” model
of the CARD database was used in order to minimize
false positives. We performed the alignment using DIA-
MOND [27] and filtered the results to sequences ex-
ceeding both 90% identity and 90% coverage of the
reference sequence in CARD.

Results
Microbiome composition and diversity across the clinical
time course
Stool samples were collected from the patient over
five time points spanning 70 days. The samples (de-
noted A-E) correspond to days − 2, + 19, + 27, + 33,
and + 68 relative to transplantation. Figure 1 plots
the microbial diversity as measured by the Shannon
diversity index as well as the species-level taxonomic
composition (from metagenomic classification of
conventional short-read data) of the patient’s gut
microbiome over time in relation to when the pa-
tient was administered various antibiotics. Across the
time course spanning 70 days, Shannon diversity was
found to decrease markedly from time point A
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through a period of intestinal E. coli domination
(samples C and D) before completely recovering by
time point E. The patient exhibits the E. coli gut

domination after the time of GVHD onset on day +
19 and before the clinical manifestation of the E. coli
bloodstream infection on day + 60.

Fig. 1 A Shannon diversity and composition of the intestinal microbiome of the study subject across five time points over the course of HCT
obtained from species-level taxonomic classification of conventional short-read samples. Each bar represents one stool sample, where colors
represent different species and thickness indicates relative readcount attributed to that species within the sample (proportion of total reads
classified to the species level). “Other” represents species comprising < 2% readcount. Microbial diversity decreases to a period of domination by
E. coli (time points C and D) followed by recovery of diversity (time point E). B Clinical time course of the study subject. The x-axis denotes
number of days after transplantation. Dates on which a stool sample was collected are marked by red dots. Each row portrays the start and end
date of administration of an antibiotic (antibiotic class indicated by the color of the line). The timing of GVHD onset and bloodstream infection
(bacteremia) are marked
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We calculated the Bray-Curtis dissimilarity index
between pairs of samples and performed Principal Coordi-
nates Analysis (PCoA) to visualize microbiome composition
(Fig. 2). Most of the variance in the PCoA plot is captured
by the stark difference in E. coli-dominated samples (C and
D), as expected. Time points A and E are more similar than
time points A and B, suggesting recovery of a similar
microbial community. However, we note that time point B
occurred after the completion of the transplant and engraft-
ment process, while the patient was exposed to several anti-
biotic agents. Sample E also has significant representation
of species not found in time point A, including a 16% frac-
tion of Lactobacillus rhamnosus.
Recovery of diversity and original microbial commu-

nity structure after HCT could occur through persist-
ence of microbes in very low fractions, acquisition of
new microbes following the HCT process, or a combin-
ation of both. To evaluate these options, we examined if
microbial genomes assembled from identical organisms
at multiple timepoints had high nucleotide similarity
(see Methods). Of species present at a relative abun-
dance greater than 2% in multiple samples, 8 species are
present at time points A, B and E. Five out of 8 species
had > 99.9% nucleotide similarity between time points A
and B, likely indicating the same dominant strain is
present at both time points. Lower A-B similarity for
other species could be the result of different strain

populations between time points or poor assembly, as
these species had < 1Mb of assembled and aligned
sequence.
In all cases, sequences assembled from species present

at time points A and E had < 99.5% similarity (Add-
itional file 1). Interestingly, Enterococcus faecium is >
99.9% similar between samples B, C and D, but much
different at time point E (~ 96% similarity, E compared
to other time points). This suggests the same dominant
strain of Enterococcus faecium is retained though the E.
coli domination event, but a different strain is acquired
or dominant by time point E. Similar results were
achieved with short-read and Athena assemblies, when
data were available. Taken together, these results suggest
that dominant original strains are not retained in the
microbiome through the clinical time course. However,
this analysis cannot rule out lowly abundant strains that
did not contribute to the genome assembly, which could
be present either before or after the E. coli domination
event.

Assembly of draft genomes
We separately performed both conventional short-read as-
sembly (MEGAHIT) and read cloud assembly (Athena)
and binned the resulting contigs into draft genomes for
individual organisms present within each metagenomic
sample (see Methods). We assessed the draft genome bins

Fig. 2 Principal Coordinate Analysis (PCoA) of microbiome content classified at the species level (Bray-Curtis beta diversity metric). Most of the
variation is captured in the x-axis and separates E. coli dominated samples from the rest. Time points A and E are closer together than time point
B, showing the recovery of a similar microbiome community following transplant
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using CheckM and defined “high-quality” bins as attaining
> 90% completeness and < 5% contamination, following a
previously described standard [28]. By this standard, read
cloud sequencing and Athena assembly produced 16 high-
quality draft genomes for time point A (listed in Table 1),
whereas conventional short-read sequencing and assembly
produced 6 high-quality genomes. Binning results and as-
sembly metrics for Athena draft genomes generated for
each time point can be found in Additional file 2.
Figure 3 shows a visual comparison of the E. coli draft

genomes generated using read clouds compared to con-
ventional sequencing for time points C and D, when E.
coli comprises the most abundant organism in the sam-
ple. Compared to the conventional assembly, the Athena
assembly demonstrated an order of magnitude increase
in contig N50. An assembly’s N50 is a metric of contigu-
ity defined as the length of the shortest sequence such
that 50% of the entire assembled genome is included in
contigs of greater or equal length (higher N50 indicates
greater contiguity). The draft genome for sample C was
the most contiguous and complete E. coli assembly, con-
taining 5.16Mb of sequence in 23 contigs with an N50
of 1.32Mb. Overall, these results support our previous
finding [2] that read cloud sequencing and Athena as-
sembly improves the reconstruction of genomes of indi-
vidual organisms within microbial mixtures.

Detection of resistance genes
We aligned the predicted protein-coding sequences
from the Athena-assembled metagenomes for samples
A, C, D, and E against the Comprehensive Antibiotic
Resistance Database (CARD) database, which yielded

87 (71 unique), 72 (72 unique), 101 (86 unique) and
15 (11 unique) resistance genes, respectively. Herein,
we use the term resistance gene to refer to any gene
present within the CARD database, which comprises
genes known to confer antibiotic resistance and regu-
lators of such genes. In the entire metagenome as-
sembled for sample A, we detected several resistance
genes present in multiple copies: tetO (7 copies),
cfxA3 (5 copies), mefA (3 copies), tetQ (3 copies),
tet(40) (2 copies), and ermF (2 copies). We found that
copies of identical resistance genes occurred both
within the genome of the same organism and among
different organisms. For instance, tetO was present on
3 contigs that all belonged to the Lachnospiraceae
bin, and it was also present in single copy in draft ge-
nomes classified as Blautia sp., Clostridium, Eubacter-
ium rectale, and Ruminococcus gnavus. Inspection of
the genomic regions of the 3 Lachnospiraceae contigs
containing tetO revealed that the regions with the re-
sistance gene share some homology but are not com-
pletely identical. Note that no resistance gene
duplication was observed for sample C. For sample D,
a set of 13 resistance genes (acrB, acrD, baeR, cpxA,
CRP, emrB, emrR, marA, mdtB, mdtC, msbA, patA,
and sul1) was detected in the draft genomes of both
E. coli and K. pneumoniae. Although both organisms
share this same set of genes, we did not find evidence
for horizontal gene transfer because the genes them-
selves are not identical (different numbers of mis-
match from the reference), and the contigs on which
the genes are present have homology in the region of
the resistance genes but are not completely identical

Table 1 Athena draft genome assemblies generated for sample A

Organism Size (Mb) Coverage Completeness Contamination N50

Catenibacterium sp. 2.57 50.16 100 0 160,908

Erysipelotrichaceae bacterium 4.33 50.59 100 3.77 498,545

Streptococcus thermophilus 1.74 21.49 99.89 0.58 49,696

Faecalibacterium prausnitzii 2.95 45.28 99.66 3.17 292,610

Eubacterium rectale 3.32 178.86 99.52 0.72 375,749

Flavonifractor plautii 3.6 52.02 99.33 0.81 983,109

Eubacterium (Genus) 2.91 29.92 99.33 2.68 148,852

Bacteroides vulgatus 5.35 629.82 98.5 0.19 502,539

Escherichia coli 4.96 20.48 98.4 0.58 70,983

Parabacteroides distasonis 5.28 77.48 98.27 0.83 455,277

Streptococcus parasanguinis 2.1 17.92 97.89 0 46,401

Clostridium sp. 3.08 18.87 97.63 0 42,920

Bifidobacterium longum 2.47 44.91 97.62 1.08 111,224

Blautia sp. 3.09 34.29 96.2 0 272,530

Bacteroides ovatus 5.98 56.70 94.61 1.87 529,675

Blautia sp. 3.16 26.35 92.83 2.22 140,920
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as determined by alignment dotplots of the contig
pairs. For sample E, the dfrF gene appeared in 5 dis-
tinct copies in 4 different organism bins. Positive se-
lection for the dfrF gene may have potentially
occurred given that trimethoprim was administered to
the patient prior to time point E.
Performing the equivalent resistance gene analysis on

the conventional sequencing data for samples A, C, D
and E revealed 27 (27 unique), 84 (84 unique), 94 (82
unique) and 9 (9 unique) resistance genes, respectively.
Compared to read cloud assembly, a greater proportion
of resistance genes detected in the conventional data are
unique (in single copy) within their assembly as genes
present in multiple copies are collapsed into a single se-
quence in the absence of barcode information. The spe-
cific resistance genes detected within each read cloud
and conventional sample as well as alignment metrics
are listed in Additional file 3. These results show that
the ability to resolve numerous copies of the same re-
sistance gene present in one or multiple distinct organ-
isms within the proper genomic context is a notable
technological advantage of the read cloud sequencing
over conventional methods.

Comparative genomic analysis of E. coli strains
We postulated that comparison of the E. coli draft ge-
nomes across time points would reveal genomic differ-
ences between the E. coli assemblies. Assuming that
the assembled E. coli genome for a given time point
represents the most abundant strain of E. coli in the
sample, significant genomic differences across time
could indicate acquisition of a new strain, selection
and subsequent outgrowth of a previously low-
abundance strain, or possible remodeling of the gen-
ome. We also hypothesized that the particular strain
of E. coli producing the bloodstream infection could
be traced back to the gut microbiome based on our
previous findings in [5]. To assess E. coli strain simi-
larities, we aligned pairs of E. coli draft genomes from
the various stool time points and the bloodstream iso-
late against each other (see Methods). Table 2 lists the
average percent nucleotide identity, total number of
SNPs, and total bases aligned for each pair of ge-
nomes. We also included NCBI E. coli S88 reference
genome in the analysis to serve as a comparison to a
strain that is also a known extraintestinal pathogen
but unrelated to our patient.

Fig. 3 Circos plot showing E. coli draft genomes for sample C (outer track) and D (inner track) constructed with read clouds and Athena assembly
(blue) compared to conventional short reads and MEGAHIT assembly (dark grey). Athena assembly demonstrates enhanced contiguity with an
approximately 10-fold improvement in N50 for both samples compared to the conventional assembly. Red dots mark genomic locations where
resistance genes were detected. Red dots located at breaks in the grey track identify resistance genes detected in the Athena assembly but were
missing from at least one of the short-read assemblies
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We discovered that the dominant intestinal E. coli
strains present in samples A, C, and D contain relatively
few SNPs and share extremely high nucleotide identity.
The number of SNPs ranged from 371 to 3811 (compared
to 56,513 SNPs with the S88 reference) and percent nu-
cleotide identity ranged from 99.91 to 99.98% (compared
to 98.61% identity with the S88 reference). Somewhat
interestingly, the bloodstream isolate (day + 60) genome
most closely matched the draft genome from sample C
(day + 27) with 182 SNPs and 99.99% nucleotide identity,
even though the patient’s clinical manifestation of blood-
stream infection occurred after time point D (day + 33)
with 3742 SNPs and 99.91% identity. The low number of
SNPs and high percent identity between the stool sample
E. coli strains and the bloodstream isolate reveal that the
same E. coli strain existing in the patient’s intestine prior
to HCT likely persisted in spite of antibiotics, expanded to
dominate the gut, and also eventually caused the patient’s
bloodstream infection. Our group initially analyzed the
short-read libraries of these samples via an orthogonal
bioinformatic approach as described in [5], which also
suggested that the intestine was the source of the blood-
stream strain for this patient.
In order to ascertain whether any large-scale genomic

island incorporation or genomic remodeling took place
in the dominant E. coli strain over time, we visualized
pairwise genome alignments of the various strains as
syntenic dotplots, which can compare two genomes to
each other. Each main axis represents the entire length
of one genome being compared, and a colored dot is
plotted at regions where the genomic sequences match
between the two genomes (areas of synteny). For ex-
ample, comparing two completely identical genomes
would produce a dotplot with a perfectly contiguous di-
agonal stretching from the bottom-left to top-right cor-
ners. Figure 4 shows the synteny dotplots comparing E.
coli strains from sample A to sample D and comparing
the bloodstream isolate to sample C. Visual inspection
of the plots showed no evidence for any large genomic

island incorporations. The lack of major discontinuities
or inversions provide additional evidence that the strains
are genetically equivalent from a genome structure per-
spective across the various time points and between the
gut and the bloodstream.

Antibiotic resistance genes in pre-transplant E. coli strain
Given that the E. coli strain dominating the intestine likely
originated from a single original strain that persisted
through the extreme selective pressures of antibiotic ad-
ministration, we hypothesized that the pre-transplant
(time point A) strain harbored antibiotic resistance genes
that potentially aided its survival. By aligning the predicted
protein-coding regions of the Athena-assembled E. coli
draft genome from sample A against the CARD database,
we detected 46 known antibiotic resistance genes
(Table 3). Functional annotations of these genes revealed
that the majority of genes code for proteins related to drug
efflux pumps, and others encode known resistance mecha-
nisms to aminoglycosides, bacitracin, and polymyxin.
There was also a gene (CTX-M-27) that confers extended-
spectrum beta-lactamase resistance.
Next, we evaluated the fitness of the pre-transplant E.

coli strain to other organisms present in the same stool
sample at time point A by comparing the resistance gene
content of E. coli to that of the other organisms. Out of
the total 87 resistance genes detected in the entire meta-
genome for sample A, 46 were localized to contigs in the
E. coli draft genome bin. The remaining 41 genes were
distributed widely across many other organisms, with no
individual bin containing greater than 5 resistance genes.
The organisms containing the second-highest number of
resistance genes (each with 5 genes) were classified at
the genus level as Lachnospiraceae and Eubacterium. Be-
cause all organisms with a near-complete draft genome
possessed no more than 5 resistance genes, our results
support a model in which the particular E. coli strain
present in the subject’s microbiome prior to transplant
was able to achieve gut domination over other organisms
due to the selective pressures applied by antibiotics.

Discussion
Our results show that the metagenomic read cloud se-
quencing methodology allows for more comprehensive
and contiguous recovery of individual bacterial genomes
from a sequenced community within the gut micro-
biome of an HCT patient. The improved assemblies
allow for augmented detection of antibiotic resistance
genes that are present in multiple copies in the metagen-
ome and facilitates comparative genomic analysis to as-
certain strain similarity.
Recovery of microbial diversity is expected following

HCT, but previous research has shown that the post-HCT
microbiome is often different than the pre-HCT

Table 2 Comparison of E. coli strain similarities across time and
spatial location

Draft
genome 1

Draft
genome 2

Total bases
aligned

Average
percent
identity

Total
number
SNPs

Assembly A Assembly
C

4,965,009 99.98 371

Assembly C Assembly
D

5,050,613 99.91 3811

Bloodstream
isolate

Assembly
C

5,056,888 99.99 182

Bloodstream
isolate

Assembly
D

5,002,210 99.91 3742

E. coli strain
S88 (NCBI)

Assembly
C

4,410,742 98.61 56,513
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microbiome [29]. Our results corroborate these findings as
microbiome diversity is restored at time point E without the
recovery of the original species and strain-level composition.
We find that the assembled genomes for organisms present
at time point E compared to other time points are actually
quite different (< 99.5 similarity for strains of the same

species). Several potential mechanisms could explain this
finding: for example, a new strain (either externally acquired
or a previously rare strain) may become dominant due to se-
lective fitness advantage; alternatively, drug exposure occur-
ring over the clinical time course may drive widescale
mutagenesis of the dominant strain within these organisms.

Fig. 4 Syntenic dotplots comparing E. coli strains across time points and between the intestine and the bloodstream. Regions of sequence
identity are marked by colored lines. A Sample A draft genome (x-axis) compared to sample D draft genome (y-axis). B Bloodstream isolate
genome (x-axis) compared to sample C draft genome (y-axis). The near-perfect correspondence reveals that the bloodstream isolate is
concordant with and thus likely originated from the intestinal microbiome
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Bacteroides was the most abundant genus in the sub-
ject’s microbiome prior to transplantation (sample A).
The patient was then administered multiple antibiotics,
and the microbiome concurrently developed markedly
decreased diversity until becoming dominated by E. coli.
Previous studies have established Bacteroides to be an
abundant and prevalent genus in the healthy human gut
microbiome; conversely, healthy populations rarely ex-
hibit gut domination by Proteobacteria like E. coli [30].
By characterizing the presence of antibiotic resistance
genes in the gut metagenome, we discovered that the E.
coli strain present at time point A, before transplant and
before any antibiotic administration, already contained a
vast arsenal of antibiotic resistance genes. Increased fit-
ness due to a greater number of resistance mechanisms
may have afforded this particular E. coli strain a selective
advantage, enabling it to survive as other organisms were
eliminated by the antibiotics.
In the setting of the specific antibiotics administered

to the patient, the survival of the dominating E. coli
strain may be explained in part by the resistance genes
detected in its genome. Preceding the E. coli domination
observed starting at time point C (day + 27), the patient
had received the following antibiotics in chronological
order: ciprofloxacin (day − 2 to + 12), cefepime (day + 2
to 3), vancomycin (day + 2 to 9), meropenem (day + 3 to
17), daptomycin (day + 9 to 11), levofloxacin (day + 17
to 32), and metronidazole (day + 21 to 33). The strain’s
observed resistance to ciprofloxacin and levofloxacin
(members of the fluoroquinolone class of antibiotics)
can potentially be explained by multidrug efflux com-
plexes AcrAB-TolC, AcrEF-TolC, EmrAB-TolC, and
MdtEF-TolC as well as multidrug resistance proteins
MdtH and MdtM, which are all annotated in CARD as
potentially conferring fluoroquinolone resistance. The
observed resistance to Piperacillin/tazobactam (a penicil-
lin) and cefepime (a cephalosporin) may be attributed to

CTX-M-27. The patient’s bloodstream infection was due
to a highly resistant extended-spectrum beta-lactamase
(ESBL) E. coli bacteria, and most of the ESBL E. coli in-
fections in the U.S. are accounted for by CTX-M-type
enzymes [31]. Our analysis did not identify resistance
genes that can explain the ability for this particular
strain of E.coli to survive despite the use of meropenem;
however, a decrease in uptake of antibiotics due to a de-
ficiency of porin expression or biofilm formation may
possibly be involved [32]. E. coli possesses native resist-
ance to daptomycin and vancomycin, which both target
Gram-positive organisms.
While this analysis follows a single HCT patient, our

findings have broader clinical implications. We demon-
strate that the intestinal microbiome of patients can act
as a reservoir of antibiotic resistance genes, which may
govern which organisms are most predisposed to endure
and dominate the gut under the extreme selective pres-
sure applied by antibiotics. Although broad-spectrum
antibiotics remain a vital part of our medical armament-
arium, the issue of increasing antibiotic resistance
strongly argues for their conscientious use. Antibiotics
can both select for antibiotic resistance and contribute
to the loss of commensal organisms and resulting expan-
sion of a few organisms or even a single organism to the
point of gut domination. Further studies are warranted
to investigate whether our findings generalize to other
HCT patients as well. It is conceivable that the antibiotic
resistance gene potential of organisms present prior to
transplantation can be used to predict or explain even-
tual gut domination events or bloodstream infections.
Additionally, it is important to note that the resistance
genes detected in this study are limited to known anti-
biotic resistance mechanisms present within the CARD
database, and commensals likely have mechanisms of re-
sistance that remain unknown.

Conclusion
This case study serves as an example of how advanced DNA
sequencing technologies can help to illuminate complex
biological phenomena occurring within real patients. We ex-
plore a clinical application of our recently developed meta-
genomic read cloud sequencing and assembly approach to
study gut microbiome dynamics under the intense selective
pressures caused by heavy antibiotic administration in the
context of HCT. Because intestinal domination has been
linked to poor outcomes in this patient population, we ap-
plied read cloud sequencing to longitudinal stool samples of
an HCT patient who developed E. coli gut domination and a
subsequent bloodstream infection. Read cloud sequencing
and the Athena assembler provided a higher-resolution
characterization of microbiome dynamics surrounding the
period of domination than conventional short-read sequen-
cing alone, as it generated draft genomes for constituent

Table 3 Antibiotic resistance genes present in pre-transplant E.
coli genome

Category Resistance Gene(s)

Beta-lactam
resistance

CTX-M-27

Aminoglycoside
resistance

kdpE

Polymyxin
resistance

arnA, pmrC, pmrE, pmrF

Bacitracin resistance bacA

Efflux pump
complex or subunit

acrA, acrB, acrD, acrE, acrF, emrA, emrB, emrD, emrE,
emrK, emrY, marA, mdfA, mdtA, mdtC, mdtE,
mdtF, mdtG, mdtH, mdtM, mdtN, mdtO, mdtP,
msbA, msrB, patA, TolC, YojI

Protein modulating
antibiotic efflux

acrS, baeR, baeS, cpxA, CRP, emrR,
evgA, evgS, gadW, gadX, H-NS
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organisms in the patient’s microbiome with greater com-
pleteness and contiguity. Moreover, the improved assembly
using read cloud sequencing enhanced our ability to assem-
ble multiple copies of conserved and repeated sequences
(e.g. antibiotic resistance genes) within their proper genomic
context.
The generation of high-quality assemblies enabled the

genomic comparison of organisms over time. We find that
although microbial diversity recovers in our subject post-
HCT, for most organisms the original dominant strains are
not retained throughout the clinical time course. By per-
forming comparative genomic analysis on the E. coli strains
between the gut microbiome across time and the blood-
stream, we found that a single highly resistant strain of E.
coli originally residing within the patient’s baseline micro-
biome prior to HCT and antibiotic treatment persisted to
eventually dominate the subject’s microbiome and also in-
stigate the bloodstream infection. By detecting known anti-
biotic resistance genes within the assembled genomes, we
discovered that the E. coli strain present before transplant
was armed with a large collection of resistance genes
whereas other organisms initially present in the same intes-
tinal community lacked such extensive resistance potential.
These findings are aligned with a model in which the even-
tual gut domination by E. coli can be attributed to its in-
creased fitness compared to other organisms, leading to its
outgrowth under extreme selective pressures. A more com-
prehensive understanding of microbiome dynamics occur-
ring in HCT could potentially lead to the development of
personalized antibiotic regimens based on the gene content
of microbial strains within an individual’s microbiome or
microbiome-related treatments to improve patient out-
comes by preserving or enhancing microbiota diversity dur-
ing the course of HCT.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3073-1.

Additional file 1. Pairwise assembly comparison of species across time
points. Pairwise genomic comparisons of species present at > 2% in
samples at multiple time points. Table lists nucleotide similarity (percent
identity) and number of bases aligned, for both read cloud and short-
read assemblies.

Additional file 2. Draft genomes generated by read cloud assembly.
Binning results and assembly metrics for Athena draft genomes
generated for all stool samples sequenced using read clouds (separate
tabs for time points A, C, D, and E).

Additional file 3. Antibiotic resistance genes detected. Resistance genes
detected within read cloud and conventional samples by aligning
assembled sequences against the CARD database (separate tabs for time
points A, C, D, and E, for both read cloud and conventional methods).

Abbreviations
CARD: Comprehensive Antibiotic Resistance Database; GVHD: Graft-versus-
host disease; HCT: Hematopoietic cell transplantation

Acknowledgements
We thank Fiona Tamburini for sequencing the bloodstream isolate, Ekaterina
Tkachenko for assistance with stool sample processing, and Alex Bishara for
valuable feedback. We would also like to thank Ziming Weng for assistance
with read cloud library preparation.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 16, 2019: Selected articles from the IEEE BIBM International
Conference on Bioinformatics & Biomedicine (BIBM) 2018: bioinformatics and
systems biology. The full contents of the supplement are available online at
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-2
0-supplement-16.

Authors’ contributions
JBK, ELM, TMA and ASB conceived of the study. JBK and ELM prepared and
sequenced the read cloud libraries. JBK and TMA collected stool samples,
extracted DNA, and prepared and sequenced the short-read sequencing li-
braries. BAS and JBK performed the computational analyses. NB provided the
bloodstream isolate sample. TMA provided clinical oversight for the project.
JBK and BAS wrote the manuscript and generated the figures with input
from all authors. All authors read and approved the final manuscript.

Funding
The project was supported in part by award Number T32GM007753 from the
National Institute of General Medical Sciences (JBK), a Stanford
Undergraduate Advising and Research Major Grant (JBK), the National
Institutes of Health (NIH), National Center for Advancing Translational
Science, Clinical and Translational Science Awards KL2 TR001083 and UL1
TR001085 (TMA), and the American Society of Blood and Marrow
Transplantation New Investigator Award (TMA). ASB was funded in part by
the National Cancer Institute NIH K08 award (no. CA184420) and the Damon
Runyon Clinical Investigator Award. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the
National Institute of General Medical Sciences or the National Institutes of
Health. This work used supercomputing resources provided by the Stanford
Genetics Bioinformatics Service Center, supported by NIH S10
Instrumentation Grant S100D023452. Publication charges were funded by
the Damon Runyon Clinical Investigator Award to ASB.

Availability of data and materials
Quality control processed sequencing data with human reads removed can
be found for both short read and 10x under the NCBI accession number
PRJNA523592.

Ethics approval and consent to participate
The protocol for sample collection (#8903) was approved by the Stanford
Institutional Review Board, and the patient provided informed consent.

Consent for publication
Not applicable.

Competing interests
The authors have received research support from Agilent and have
participated in research collaborations not related to this work with 10x
Genomics and Illumina.

Author details
1Harvard Medical School, Harvard University, Boston, MA 02115, USA.
2Department of Genetics, Stanford University, Stanford, CA 94305, USA.
3Department of Medicine, Division of Infectious Diseases and Geographic
Medicine, Stanford University, Stanford, CA 94305, USA. 4Clinical Microbiology
Laboratory, Stanford University Medical Center, Stanford, CA 94305, USA.
5Department of Pathology, Stanford University, Stanford, CA 94305, USA.
6Department of Genetics, Stanford University, Stanford, CA 94035, USA.
7Department of Medicine, Division of Hematology, Stanford University,
Stanford, CA 94305, USA. 8Department of Medicine, Division of Infectious
Diseases, University of North Carolina, Chapel Hill, NC 27599, USA.

Kang et al. BMC Bioinformatics 2019, 20(Suppl 16):585 Page 12 of 13

https://doi.org/10.1186/s12859-019-3073-1
https://doi.org/10.1186/s12859-019-3073-1
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-16
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-16


Published: 2 December 2019

References
1. Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, et al.

Haplotyping germline and cancer genomes with high-throughput linked-
read sequencing. Nat Biotechnol. 2016;34(3):303–11.

2. Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A, et al. High-
quality genome sequences of uncultured microbes by assembly of read
clouds. Nat Biotechnol. 2018;36(11):1067–75.

3. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al.
Intestinal domination and the risk of bacteremia in patients undergoing
allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;
55(7):905–14.

4. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The
effects of intestinal tract bacterial diversity on mortality following allogeneic
hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82.

5. Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS.
Precision identification of diverse bloodstream pathogens in the gut
microbiome. Nat Med. 2018;24(12):1809–14.

6. Kumar J, Kumar M, Gupta S, Ahmed V, Bhambi M, Pandey R, et al. An
improved methodology to overcome key issues in human fecal
metagenomic DNA extraction. Genomics Proteomics Bioinformatics. 2016;
14(6):371–8.

7. Andrews S. Fastqc a quality control tool for high throughput sequence
data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed
10 Nov 2017.

8. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17(1):10–2.

9. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15(3):R46.

10. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species
abundance in metagenomics data. Peer J Comput Sci. 2017;3:e104.

11. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre R, McGlinn D, et al.
vegan: Community Ecology Package. R package version 2.5–3. 2018. https://
CRAN.R-project.org/package=vegan. Accessed 1 Aug 2018.

12. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast
single-node solution for large and complex metagenomics assembly via
succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.

13. Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2010;26(5):589–95.

14. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately
reconstructing single genomes from complex microbial communities. PeerJ.
2015;3:e1165.

15. Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated
clustering sequences using information of genomic signatures and marker
genes. Sci Rep. 2016;6:24175.

16. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al.
Binning metagenomic contigs by coverage and composition. Nat Methods.
2014;11(11):1144–6.

17. Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning
algorithm to recover genomes from multiple metagenomic datasets.
Bioinformatics. 2016;32(4):605–7.

18. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al.
Recovery of genomes from metagenomes via a dereplication, aggregation
and scoring strategy. Nat Microbiol. 2018;3(7):836–43.

19. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Res. 2015;25(7):1043–55.

21. Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances
circular visualization in R. Bioinformatics. 2014;30(19):2811–2.

22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics.
2014;30(14):2068–9.

23. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL.
Alignment of whole genomes. Nucleic Acids Res. 1999;27(11):2369–76.

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;
25(16):2078–9.

25. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new
versatile metagenomic assembler. Genome Res. 2017 May 1;27(5):824–34.

26. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD
2017: expansion and model-centric curation of the comprehensive
antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–73.

27. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12(1):59–60.

28. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
TBK, et al. Minimum information about a single amplified genome (MISAG)
and a metagenome-assembled genome (MIMAG) of bacteria and archaea.
Nat Biotechnol. 2017;35(8):725–31.

29. Rashidi A, Kaiser T, Holtan SG, Weisdorf DJ, Khoruts A, Staley C. Pre-
transplant recovery of microbiome diversity without recovery of the original
microbiome. Bone Marrow Transplant. 2018;29:1.

30. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome.
Genome Med. 2016;8(1):51.

31. Doi Y, Park YS, Rivera JI, Adams-Haduch JM, Hingwe A, Sordillo EM, et al.
Community-associated extended-spectrum β-lactamase-producing Escherichia
coli infection in the United States. Clin Infect Dis. 2013;56(5):641–8.

32. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in
Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kang et al. BMC Bioinformatics 2019, 20(Suppl 16):585 Page 13 of 13

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Sample preparation and sequencing
	Quality control of reads
	Taxonomic classification of reads and diversity calculation
	Generation of organism draft genomes
	Comparative genomic analysis
	Antibiotic resistance gene detection

	Results
	Microbiome composition and diversity across the clinical time course
	Assembly of draft genomes
	Detection of resistance genes
	Comparative genomic analysis of E. coli strains
	Antibiotic resistance genes in pre-transplant E. coli strain

	Discussion
	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	About this supplement
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

